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Chapter 1

Overview of Wireless Communications

Wireless communications is, by any measure, the fastest growing segment of the communications industry.
As such, it has captured the attention of the media and the imagination of the public. Cellular phones
have experienced exponential growth over the last decade, and this growth continues unabated worldwide,
with more than a billion worldwide cell phone users projected in the near future. Indeed, cellular phones
have become a critical business tool and part of everyday life in most developed countries, and are
rapidly supplanting antiquated wireline systems in many developing countries. In addition, wireless
local area networks are currently poised to supplement or replace wired networks in many businesses
and campuses. Many new applications, including wireless sensor networks, automated highways and
factories, smart homes and appliances, and remote telemedicine, are emerging from research ideas to
concrete systems. The explosive growth of wireless systems coupled with the proliferation of laptop and
palmtop computers indicate a bright future for wireless networks, both as stand-alone systems and as
part of the larger networking infrastructure. However, many technical challenges remain in designing
robust wireless networks that deliver the performance necessary to support emerging applications. In
this introductory chapter we will briefly review the history of wireless networks, from the smoke signals
of the Pre-industrial age to the cellular, satellite, and other wireless networks of today. We then discuss
the wireless vision in more detail, including the technical challenges that must be overcome to make this
vision a reality. We will also describe the current wireless systems in operation today as well as emerging
systems and standards. The huge gap between the performance of current systems and the vision for
future systems indicates that much research remains to be done to make the wireless vision a reality.

1.1 History of Wireless Communications

The first wireless networks were developed in the Pre-industrial age. These systems transmitted infor-
mation over line-of-sight distances (later extended by telescopes) using smoke signals, torch signaling,
flashing mirrors, signal flares, or semaphore flags. An elaborate set of signal combinations was developed
to convey complex messages with these rudimentary signals. Observation stations were built on hilltops
and along roads to relay these messages over large distances. These early communication networks were
replaced first by the telegraph network (invented by Samuel Morse in 1838) and later by the telephone.
In 1895, a few decades after the telephone was invented, Marconi demonstrated the first radio trans-
mission from the Isle of Wight to a tugboat 18 miles away, and radio communications was born. Radio
technology advanced rapidly to enable transmissions over larger distances with better quality, less power,
and smaller, cheaper devices, thereby enabling public and private radio communications, television, and
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wireless networking.

Early radio systems transmitted analog signals. Today most radio systems transmit digital signals
composed of binary bits, where the bits are obtained directly from a data signal or by digitizing an
analog voice or music signal. A digital radio can transmit a continuous bit stream or it can group
the bits into packets. The latter type of radio is called a packet radio and is characterized by bursty
transmissions: the radio is idle except when it transmits a packet. The first network based on packet
radio, ALOHANET, was developed at the University of Hawaii in 1971. This network enabled computer
sites at seven campuses spread out over four islands to communicate with a central computer on Oahu
via radio transmission. The network architecture used a star topology with the central computer at its
hub. Any two computers could establish a bi-directional communications link between them by going
through the central hub. ALOHANET incorporated the first set of protocols for channel access and
routing in packet radio systems, and many of the underlying principles in these protocols are still in
use today. The U.S. military was extremely interested in the combination of packet data and broadcast
radio inherent to ALOHANET. Throughout the 70’s and early 80’s the Defense Advanced Research
Projects Agency (DARPA) invested significant resources to develop networks using packet radios for
tactical communications in the battlefield. The nodes in these ad hoc wireless networks had the ability to
self-configure (or reconfigure) into a network without the aid of any established infrastructure. DARPA’s
investment in ad hoc networks peaked in the mid 1980’s, but the resulting networks fell far short of
expectations in terms of speed and performance. DARPA has continued work on ad hoc wireless network
research for military use, but many technical challenges in terms of performance and robustness remain.
Packet radio networks have also found commercial application in supporting wide-area wireless data
services. These services, first introduced in the early 1990’s, enable wireless data access (including email,
file transfer, and web browsing) at fairly low speeds, on the order of 20 Kbps. The market for these
wide-area wireless data services is relatively flat, due mainly to their low data rates, high cost, and lack
of “killer applications”. Next-generation cellular services are slated to provide wireless data in addition
to voice, which will provide stiff competition to these data-only services.

The introduction of wired Ethernet technology in the 1970’s steered many commercial companies
away from radio-based networking. Ethernet’s 10 Mbps data rate far exceeded anything available using
radio, and companies did not mind running cables within and between their facilities to take advantage
of these high rates. In 1985 the Federal Communications Commission (FCC) enabled the commercial
development of wireless LANs by authorizing the public use of the Industrial, Scientific, and Medical
(ISM) frequency bands for wireless LAN products. The ISM band was very attractive to wireless LAN
vendors since they did not need to obtain an FCC license to operate in this band. However, the wireless
LAN systems could not interfere with the primary ISM band users, which forced them to use a low power
profile and an inefficient signaling scheme. Moreover, the interference from primary users within this
frequency band was quite high. As a result these initial LAN systems had very poor performance in
terms of data rates and coverage. This poor performance, coupled with concerns about security, lack
of standardization, and high cost (the first network adaptors listed for $1,400 as compared to a few
hundred dollars for a wired Ethernet card) resulted in weak sales for these initial LAN systems. Few of
these systems were actually used for data networking: they were relegated to low-tech applications like
inventory control. The current generation of wireless LANS, based on the IEEE 802.11b and 802.11a
standards, have better performance, although the data rates are still relatively low (effective data rates
on the order of 2 Mbps for 802.11b and around 10 Mbps for 802.11a) and the coverage area is still small
(100-500 feet). Wired Ethernets today offer data rates of 100 Mbps, and the performance gap between
wired and wireless LANs is likely to increase over time without additional spectrum allocation. Despite
the big data rate differences, wireless LANs are becoming the prefered Internet access method in many
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homes, offices, and campus environments due to their convenience and freedom from wires. However,
most wireless LANs support applications that are not bandwidth-intensive (email, file transfer, web
browsing) and typically have only one user at a time accessing the system. The challenge for widespread
wireless LAN acceptance and use will be for the wireless technology to support many users simultaneously,
especially if bandwidth-intensive applications become more prevalent.

By far the most successful application of wireless networking has been the cellular telephone system.
Cellular telephones are projected to have a billion subscribers worldwide within the next few years. The
convergence of radio and telephony began in 1915, when wireless voice transmission between New York
and San Francisco was first established. In 1946 public mobile telephone service was introduced in 25 cities
across the United States. These initial systems used a central transmitter to cover an entire metropolitan
area. This inefficient use of the radio spectrum coupled with the state of radio technology at that time
severely limited the system capacity: thirty years after the introduction of mobile telephone service the
New York system could only support 543 users.

A solution to this capacity problem emerged during the 50’s and 60’s when researchers at AT&T
Bell Laboratories developed the cellular concept [1]. Cellular systems exploit the fact that the power
of a transmitted signal falls off with distance. Thus, the same frequency channel can be allocated to
users at spatially-separate locations with minimal interference between the users. Using this premise, a
cellular system divides a geographical area into adjacent, non-overlapping, “cells”. Different channel sets
are assigned to each cell, and cells that are assigned the same channel set are spaced far enough apart so
that interference between the mobiles in these cells is small. Each cell has a centralized transmitter and
receiver (called a base station) that communicates with the mobile units in that cell, both for control
purposes and as a call relay. All base stations have high-bandwidth connections to a mobile telephone
switching office (MTSO), which is itself connected to the public-switched telephone network (PSTN). The
handoff of mobile units crossing cell boundaries is typically handled by the MTSO, although in current
systems some of this functionality is handled by the base stations and/or mobile units.

The original cellular system design was finalized in the late 60’s. However, due to regulatory delays
from the FCC, the system was not deployed until the early 80’s, by which time much of the original
technology was out-of-date. The explosive growth of the cellular industry took most everyone by surprise,
especially the original inventors at AT&T, since AT&T basically abandoned the cellular business by the
early 80’s to focus on fiber optic networks. The first analog cellular system deployed in Chicago in 1983
was already saturated by 1984, at which point the FCC increased the cellular spectral allocation from 40
MHz to 50 MHz. As more and more cities became saturated with demand, the development of digital
cellular technology for increased capacity and better performance became essential.

The second generation of cellular systems are digital. In addition to voice communication, these
systems provide email, voice mail, and paging services. Unfortunately, the great market potential for
cellular phones led to a proliferation of digital cellular standards. Today there are three different digital
cellular phone standards in the U.S. alone, and other standards in Europe and Japan, none of which are
compatible. The fact that different cities have different incompatible standards makes roaming throughout
the U.S. using one digital cellular phone impossible. Most cellular phones today are dual-mode: they
incorporate one of the digital standards along with the old analog standard, since only the analog standard
provides universal coverage throughout the U.S. More details on today’s digital cellular systems will be
given in Section 15.

Radio paging systems are another example of an extremely successful wireless data network, with 50
million subscribers in the U.S. alone. However, their popularity is starting to wane with the widespread
penetration and competitive cost of cellular telephone systems. Paging systems allow coverage over very
wide areas by simultaneously broadcasting the pager message at high power from multiple base stations or
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satellites. These systems have been around for many years. Early radio paging systems were analog 1 bit
messages signaling a user that someone was trying to reach him or her. These systems required callback
over the regular telephone system to obtain the phone number of the paging party. Recent advances
now allow a short digital message, including a phone number and brief text, to be sent to the pagee as
well. In paging systems most of the complexity is built into the transmitters, so that pager receivers
are small, lightweight, and have a long battery life. The network protocols are also very simple since
broadcasting a message over all base stations requires no routing or handoff. The spectral inefficiency
of these simultaneous broadcasts is compensated by limiting each message to be very short. Paging
systems continue to evolve to expand their capabilities beyond very low-rate one-way communication.
Current systems are attempting to implement “answer-back” capability, i.e. two-way communication.
This requires a major change in the pager design, since it must now transmit signals in addition to
receiving them, and the transmission distances can be quite large. Recently many of the major paging
companies have teamed up with the palmtop computer makers to incorporate paging functions into these
devices [2]. This development indicates that short messaging without additional functionality is no longer
competitive given other wireless communication options.

Commercial satellite communication systems are now emerging as another major component of the
wireless communications infrastructure. Satellite systems can provide broadcast services over very wide
areas, and are also necessary to fill the coverage gap between high-density user locations. Satellite mobile
communication systems follow the same basic principle as cellular systems, except that the cell base
stations are now satellites orbiting the earth. Satellite systems are typically characterized by the height
of the satellite orbit, low-earth orbit (LEOs at roughly 2000 Km. altitude), medium-earth orbit (MEOs
at roughly 9000 Km. altitude), or geosynchronous orbit (GEOs at roughly 40,000 Km. altitude). The
geosynchronous orbits are seen as stationary from the earth, whereas the satellites with other orbits have
their coverage area change over time. The disadvantage of high altitude orbits is that it takes a great
deal of power to reach the satellite, and the propagation delay is typically too large for delay-constrained
applications like voice. However, satellites at these orbits tend to have larger coverage areas, so fewer
satellites (and dollars) are necessary to provide wide-area or global coverage.

The concept of using geosynchronous satellites for communications was first suggested by the science
fiction writer Arthur C. Clarke in 1945. However, the first deployed satellites, the Soviet Union’s Sputnik
in 1957 and the Nasa/Bell Laboratories’ Echo-1 in 1960, were not geosynchronous due to the difficulty
of lifting a satellite into such a high orbit. The first GEO satellite was launched by Hughes and Nasa in
1963 and from then until recently GEOs dominated both commercial and government satellite systems.
The trend in current satellite systems is to use lower orbits so that lightweight handheld devices can
communicate with the satellite [3]. Inmarsat is the most well-known GEO satellite system today, but
most new systems use LEO orbits. These LEOs provide global coverage but the link rates remain low
due to power and bandwidth constraints. These systems allow calls any time and anywhere using a single
communications device. The services provided by satellite systems include voice, paging, and messaging
services, all at fairly low data rates [3, 4]. The LEO satellite systems that have been deployed are not
experiencing the growth they had anticipated, and one of the first systems (Iridium) was forced into
bankruptcy and went out of business.

A natural area for satellite systems is broadcast entertainment. Direct broadcast satellites operate in
the 12 GHz frequency band. These systems offer hundreds of TV channels and are major competitors to
cable. Satellite-delivered digital radio is an emerging application in the 2.3 GHz frequency band. These
systems offer digital audio broadcasts nationwide at near-CD quality. Digital audio broadcasting is also
quite popular in Europe.
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1.2 Wireless Vision

The vision of wireless communications supporting information exchange between people or devices is
the communications frontier of the next century. This vision will allow people to operate a virtual
office anywhere in the world using a small handheld device - with seamless telephone, modem, fax, and
computer communications. Wireless networks will also be used to connect together palmtop, laptop, and
desktop computers anywhere within an office building or campus, as well as from the corner cafe. In
the home these networks will enable a new class of intelligent home electronics that can interact with
each other and with the Internet in addition to providing connectivity between computers, phones, and
security/monitoring systems. Such smart homes can also help the elderly and disabled with assisted
living, patient monitoring, and emergency response. Video teleconferencing will take place between
buildings that are blocks or continents apart, and these conferences can include travelers as well, from
the salesperson who missed his plane connection to the CEO off sailing in the Caribbean. Wireless
video will be used to create remote classrooms, remote training facilities, and remote hospitals anywhere
in the world. Wireless sensors have an enormous range of both commercial and military applications.
Commercial applications include monitoring of fire hazards, hazardous waste sites, stress and strain
in buildings and bridges, or carbon dioxide movement and the spread of chemicals and gasses at a
disaster site. These wireless sensors will self-configure into a network to process and interpret sensor
measurements and then convey this information to a centralized control location. Military applications
include identification and tracking of enemy targets, detection of chemical and biological attacks, and
the support of unmanned robotic vehicles. Finally, wireless networks enable distributed control systems,
with remote devices, sensors, and actuators linked together via wireless communication channels. Such
networks are imperative for coordinating unmanned mobile units and greatly reduce maintenance and
reconfiguration costs over distributed control systems with wired communication links, for example in
factory automation.

The various applications described above are all components of the wireless vision. So what, ex-
actly, is wireless communications? There are many different ways to segment this complex topic into
different applications, systems, or coverage regions. Wireless applications include voice, Internet access,
web browsing, paging and short messaging, subscriber information services, file transfer, video telecon-
ferencing, sensing, and distributed control. Systems include cellular telephone systems, wireless LANs,
wide-area wireless data systems, satellite systems, and ad hoc wireless networks. Coverage regions in-
clude in-building, campus, city, regional, and global. The question of how best to characterize wireless
communications along these various segments has resulted in considerable fragmentation in the industry,
as evidenced by the many different wireless products, standards, and services being offered or proposed.
One reason for this fragmentation is that different wireless applications have different requirements. Voice
systems have relatively low data rate requirements (around 20 Kbps) and can tolerate a fairly high prob-
ability of bit error (bit error rates, or BERs, of around 10−3), but the total delay must be less than 100
msec or it becomes noticeable to the end user. On the other hand, data systems typically require much
higher data rates (1-100 Mbps) and very small BERs (the target BER is 10−8 and all bits received in
error must be retransmitted) but do not have a fixed delay requirement. Real-time video systems have
high data rate requirements coupled with the same delay constraints as voice systems, while paging and
short messaging have very low data rate requirements and no delay constraints. These diverse require-
ments for different applications make it difficult to build one wireless system that can satisfy all these
requirements simultaneously. Wired networks are moving towards integrating the diverse requirements
of different systems using a single protocol (e.g. ATM or SONET). This integration requires that the
most stringent requirements for all applications be met simultaneously. While this is possible on wired
networks, with data rates on the order of Gbps and BERs on the order of 10−12, it is not possible on
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wireless networks, which have much lower data rates and higher BERs. Therefore, at least in the near
future, wireless systems will continue to be fragmented, with different protocols tailored to support the
requirements of different applications.

Will there be a large demand for all wireless applications, or will some flourish while others vanish?
Companies are investing large sums of money to build multimedia wireless systems, yet the only highly
profitable wireless application so far is voice. Experts have been predicting a huge market for wireless
data services and products for the last 10 years, but the market for these products remains relatively
small with sluggish growth. To examine the future of wireless data, it is useful to see the growth of various
communication services over the last five years, as shown in Figure 1.1. In this figure we see that cellular
and paging subscribers are growing exponentially. This growth is exceeded only by the growing demand
for Internet access, driven by web browsing and email exchange. The number of laptop and palmtop
computers is also growing steadily. These trends indicate that people want to communicate while on the
move. They also want to take their computers wherever they go. It is therefore reasonable to assume that
people want the same data communications capabilities on the move as they enjoy in their home or office.
Yet the demand for high-speed wireless data has not materialized, except for relatively stationary users
accessing the network via a wireless LAN. Why the discrepancy? Perhaps the main reason for the lack
of enthusiasm in wireless data for highly mobile users is the high cost and poor performance of today’s
systems, along with a lack of “killer applications” for mobile users beyond voice and low-rate data.
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Figure 1.1: Growth of Wireless Communications Markets

Consider the performance gap between wired and wireless networks for both local and wide-area
networks, as shown in Figures 1.2 and 1.3. Wired local-area networks have data rates that are two orders
of magnitude higher than their wireless counterparts. ATM is promising 100,000 Kbps for wired wide-
area networks, while today’s wide-area wireless data services provide only tens of Kbps. Moreover, the
performance gap between wired and wireless networks appears to be growing. Thus, the most formidable
obstacle to the growth of wireless data systems is their performance. Many technical challenges must
be overcome to improve wireless network performance such that users will accept this performance in
exchange for mobility.
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1.3 Technical Issues

The technical problems that must be solved to make the wireless vision a reality extend across all levels of
the system design. At the hardware level the terminal must have multiple modes of operation to support
the different applications and media. Desktop computers currently have the capability to process voice,
image, text, and video data, but breakthroughs in circuit design are required to implement multimode
operation in a small, lightweight, handheld device. Since most people don’t want to carry around a
twenty pound battery, the signal processing and communications hardware of the portable terminal must
consume very little power, which will impact higher levels of the system design. Many of the signal
processing techniques required for efficient spectral utilization and networking demand much processing
power, precluding the use of low power devices. Hardware advances for low power circuits with high
processing ability will relieve some of these limitations. However, placing the processing burden on fixed
sites with large power resources has and will continue to dominate wireless system designs. The associated
bottlenecks and single points-of-failure are clearly undesirable for the overall system. Moreover, in some
applications (e.g. sensors) network nodes will not be able to recharge their batteries. In this case the finite
battery energy must be allocated efficiently across all layers of the network protocol stack [5]. The finite
bandwidth and random variations of the communication channel will also require robust compression
schemes which degrade gracefully as the channel degrades.

The wireless communication channel is an unpredictable and difficult communications medium. First
of all, the radio spectrum is a scarce resource that must be allocated to many different applications and
systems. For this reason spectrum is controlled by regulatory bodies both regionally and globally. In
the U.S. spectrum is allocated by the FCC, in Europe the equivalent body is the European Telecommu-
nications Standards Institute (ETSI), and globally spectrum is controlled by the International Telecom-
munications Union (ITU). A regional or global system operating in a given frequency band must obey
the restrictions for that band set forth by the corresponding regulatory body as well as any standards
adopted for that spectrum. Spectrum can also be very expensive since in most countries, including the
U.S., spectral licenses are now auctioned to the highest bidder. In the 2 GHz spectral auctions of the
early 90s, companies spent over nine billion dollars for licenses, and the recent auctions in Europe for 3G
spectrum garnered over 100 billion dollars. The spectrum obtained through these auctions must be used
extremely efficiently to get a reasonable return on its investment, and it must also be reused over and
over in the same geographical area, thus requiring cellular system designs with high capacity and good
performance. At frequencies around several Gigahertz wireless radio components with reasonable size,
power consumption, and cost are available. However, the spectrum in this frequency range is extremely
crowded. Thus, technological breakthroughs to enable higher frequency systems with the same cost and
performance would greatly reduce the spectrum shortage, although path loss at these higher frequencies
increases, thereby limiting range.

As a signal propagates through a wireless channel, it experiences random fluctuations in time if the
transmitter or receiver is moving, due to changing reflections and attenuation. Thus, the characteristics
of the channel appear to change randomly with time, which makes it difficult to design reliable systems
with guaranteed performance. Security is also more difficult to implement in wireless systems, since
the airwaves are susceptible to snooping from anyone with an RF antenna. The analog cellular systems
have no security, and you can easily listen in on conversations by scanning the analog cellular frequency
band. All digital cellular systems implement some level of encryption. However, with enough knowledge,
time and determination most of these encryption methods can be cracked and, indeed, several have been
compromised. To support applications like electronic commerce and credit card transactions, the wireless
network must be secure against such listeners.

Wireless networking is also a significant challenge [23, 24, 25, 26]. The network must be able to
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locate a given user wherever it is amongst millions of globally-distributed mobile terminals. It must then
route a call to that user as it moves at speeds of up to 100 mph. The finite resources of the network must
be allocated in a fair and efficient manner relative to changing user demands and locations. Moreover,
there currently exists a tremendous infrastructure of wired networks: the telephone system, the Internet,
and fiber optic cable, which should be used to connect wireless systems together into a global network.
However, wireless systems with mobile users will never be able to compete with wired systems in terms of
data rate and reliability. The design of protocols to interface between wireless and wired networks with
vastly different performance capabilities remains a challenging topic of research.

Perhaps the most significant technical challenge in wireless network design is an overhaul of the
design process itself. Wired networks are mostly designed according to the layers of the OSI model:
each layer is designed independent from the other layers with baseline mechanisms to interface between
layers. This methodology greatly simplifies network design, although it leads to some inefficiency and
performance loss due to the lack of a global design optimization. However, the large capacity and good
reliability of wired network links make it easier to buffer high-level network protocols from the lower level
protocols for link transmission and access, and the performance loss resulting from this isolated protocol
design is fairly low. However, the situation is very different in a wireless network. Wireless links can
exhibit very poor performance, and this performance along with user connectivity and network topology
changes over time. In fact, the very notion of a wireless link is somewhat fuzzy due to the nature of
radio propagation. The dynamic nature and poor performance of the underlying wireless communication
channel indicates that high-performance wireless networks must be optimized for this channel and must
adapt to its variations as well as to user mobility. Thus, these networks will require an integrated and
adaptive protocol stack across all layers of the OSI model, from the link layer to the application layer.

In summary, technological advances in the following areas are needed to implement the wireless
vision outlined above:

• Measurements and models for wireless indoor and outdoor channels.

• Hardware for low-power handheld computer and communication terminals.

• Techniques to mitigate wireless channel impairments and to improve the quality and spectral effi-
ciency of communication over wireless channels.

• Better means of sharing the limited spectrum to accommodate the different wireless applications.

• Protocols for routing and mobility management which support users on the move.

• An architecture to connect the various wireless subnetworks together and to the backbone wireline
network.

• An integrated and adaptive protocol stack for wireless networks that extends across all layers of
the OSI model.

Given these requirements, the field of wireless communications draws from many areas of expertise,
including physics, communications, signal processing, network theory and design, software design, and
hardware design. Moreover, given the fundamental limitations of the wireless channels and the explo-
sive demand for its utilization, communication between these interdisciplinary groups is necessary to
implement the most rudimentary shell of the wireless vision depicted above.

We now give an overview of the wireless systems in operation today. It will be clear from this
overview that the wireless vision remains a distant goal, with many challenges remaining before it will
be realized. Many of these challenges will be examined in detail in later chapters.
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1.4 Current Wireless Systems

1.4.1 Cellular Telephone Systems

Cellular telephone systems, also referred to as Personal Communication Systems (PCS), are extremely
popular and lucrative worldwide: these systems have sparked much of the optimism about the future
of wireless networks. Cellular telephone systems are designed to provide two-way voice communication
at vehicle speeds with regional or national coverage. Cellular systems were initially designed for mobile
terminals inside vehicles with antennas mounted on the vehicle roof. Today these systems have evolved to
support lightweight handheld mobile terminals operating inside and outside buildings at both pedestrian
and vehicle speeds.

The basic premise behind cellular system design is frequency reuse, which exploits path loss to reuse
the same frequency spectrum at spatially-separated locations. Specifically, the coverage area of a cellular
system is divided into nonoverlapping cells where some set of channels is assigned to each cell. This
same channel set is used in another cell some distance away, as shown in Figure 1.4, where fi denotes
the channel set used in a particular cell. Operation within a cell is controlled by a centralized base
station, as described in more detail below. The interference caused by users in different cells operating
on the same channel set is called intercell interference. The spatial separation of cells that reuse the
same channel set, the reuse distance, should be as small as possible to maximize the spectral efficiency
obtained by frequency reuse. However, as the reuse distance decreases, intercell interference increases, due
to the smaller propagation distance between interfering cells. Since intercell interference must remain
below a given threshold for acceptable system performance, reuse distance cannot be reduced below
some minimum value. In practice it is quite difficult to determine this minimum value since both the
transmitting and interfering signals experience random power variations due to path loss, shadowing,
and multipath. In order to determine the best reuse distance and base station placement, an accurate
characterization of signal propagation within the cells is needed. This characterization is usually obtained
using detailed analytical models, sophisticated computer-aided modeling, or empirical measurements.

Initial cellular system designs were mainly driven by the high cost of base stations, approximately
one million dollars apiece. For this reason early cellular systems used a relatively small number of cells
to cover an entire city or region. The cell base stations were placed on tall buildings or mountains and
transmitted at very high power with cell coverage areas of several square miles. These large cells are called
macrocells. Signals propagated out from base stations uniformly in all directions, so a mobile moving in a
circle around the base station would have approximately constant received power. This circular contour
of constant power yields a hexagonal cell shape for the system, since a hexagon is the closest shape to a
circle that can cover a given area with multiple nonoverlapping cells.

Cellular telephone systems are now evolving to smaller cells with base stations close to street level or
inside buildings transmitting at much lower power. These smaller cells are called microcells or picocells,
depending on their size. This evolution is driven by two factors: the need for higher capacity in areas with
high user density and the reduced size and cost of base station electronics. A cell of any size can support
roughly the same number of users if the system is scaled accordingly. Thus, for a given coverage area a
system with many microcells has a higher number of users per unit area than a system with just a few
macrocells. Small cells also have better propagation conditions since the lower base stations have reduced
shadowing and multipath. In addition, less power is required at the mobile terminals in microcellular
systems, since the terminals are closer to the base stations. However, the evolution to smaller cells has
complicated network design. Mobiles traverse a small cell more quickly than a large cell, and therefore
handoffs must be processed more quickly. In addition, location management becomes more complicated,
since there are more cells within a given city where a mobile may be located. It is also harder to develop
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Figure 1.4: Cellular Systems.

general propagation models for small cells, since signal propagation in these cells is highly dependent on
base station placement and the geometry of the surrounding reflectors. In particular, a hexagonal cell
shape is not a good approximation to signal propagation in microcells. Microcellular systems are often
designed using square or triangular cell shapes, but these shapes have a large margin of error in their
approximation to microcell signal propagation [7].

All base stations in a city are connected via a high-speed communications link to a mobile telephone
switching office (MTSO), as shown in Figure 1.5. The MTSO acts as a central controller for the network,
allocating channels within each cell, coordinating handoffs between cells when a mobile traverses a cell
boundary, and routing calls to and from mobile users in conjunction with the public switched telephone
network (PSTN). A new user located in a given cell requests a channel by sending a call request to the
cell’s base station over a separate control channel. The request is relayed to the MTSO, which accepts
the call request if a channel is available in that cell. If no channels are available then the call request
is rejected. A call handoff is initiated when the base station or the mobile in a given cell detects that
the received signal power for that call is approaching a given minimum threshold. In this case the base
station informs the MTSO that the mobile requires a handoff, and the MTSO then queries surrounding
base stations to determine if one of these stations can detect that mobile’s signal. If so then the MTSO
coordinates a handoff between the original base station and the new base station. If no channels are
available in the cell with the new base station then the handoff fails and the call is terminated. False
handoffs may also be initiated if a mobile is in a deep fade, causing its received signal power to drop
below the minimum threshold even though it may be nowhere near a cell boundary.

Cellular telephone systems have recently moved from analog to digital technology. Digital technology
has many advantages over analog. The components are cheaper, faster, smaller, and require less power.
Voice quality is improved due to error correction coding. Digital systems also have higher capacity
than analog systems since they are not limited to frequency division for multiple access, and they can
take advantage of advanced compression techniques and voice activity factors. In addition, encryption
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techniques can be used to secure digital signals against eavesdropping. All cellular systems being deployed
today are digital, and these systems provide voice mail, paging, and email services in addition to voice.
Due to their lower cost and higher efficiency, service providers have used aggressive pricing tactics to
encourage user migration from analog to digital systems. Since they are relatively new, digital systems
do not always work as well as the old analog ones. Users experience poor voice quality, frequent call
dropping, short battery life, and spotty coverage in certain areas. System performance will certainly
improve as the technology and networks mature. However, it is unlikely that cellular phones will provide
the same quality as wireline service any time soon. The great popularity of cellular systems indicates
that users are willing to tolerate inferior voice communications in exchange for mobility.

Spectral sharing in digital cellular can be done using frequency-division, time-division, code-division
(spread spectrum), or hybrid combinations of these techniques (see Chapter 14). In time-division the
signal occupies the entire frequency band, and is divided into time slots ti which are reused in distant
cells [8]. Time division is depicted by Figure 1.4 if the fis are replaced by tis. Time-division is more
difficult to implement than frequency-division since the users must be time-synchronized. However, it is
easier to accommodate multiple data rates with time-division since multiple timeslots can be assigned
to a given user. Spectral sharing can also be done using code division, which is commonly implemented
using either direct-sequence or frequency-hopping spread spectrum [9]. In direct-sequence each user
modulates its data sequence by a different pseudorandom chip sequence which is much faster than the
data sequence. In the frequency domain, the narrowband data signal is convolved with the wideband chip
signal, resulting in a signal with a much wider bandwidth than the original data signal - hence the name
spread spectrum. In frequency hopping the carrier frequency used to modulate the narrowband data
signal is varied by a pseudorandom chip sequence which may be faster or slower than the data sequence.
Since the carrier frequency is hopped over a large signal bandwidth, frequency-hopping also spreads the
data signal to a much wider bandwidth. Typically spread spectrum signals are superimposed onto each
other within the same signal bandwidth. A spread spectrum receiver can separate each of the distinct
signals by separately decoding each spreading sequence. However, since the codes are semi-orthogonal,
the users within a cell interfere with each other (intracell interference), and codes that are reused in other
cells also cause interference (intercell interference). Both the intracell and intercell interference power is
reduced by the spreading gain of the code. Moreover, interference in spread spectrum systems can be
further reduced through multiuser detection and interference cancellation.

In the U.S. the standards activities surrounding the second generation of digital cellular systems
provoked a raging debate on multiple access for these systems, resulting in several incompatible standards
[10, 11, 12]. In particular, there are two standards in the 900 MHz (cellular) frequency band: IS-54, which
uses a combination of TDMA and FDMA, and IS-95, which uses semi-orthogonal CDMA [13, 14]. The
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spectrum for digital cellular in the 2 GHz (PCS) frequency band was auctioned off, so service providers
could use an existing standard or develop proprietary systems for their purchased spectrum. The end
result has been three different digital cellular standards for this frequency band: IS-136 (which is basically
the same as IS-54 at a higher frequency), IS-95, and the European digital cellular standard GSM, which
uses a combination of TDMA and slow frequency-hopping. The digital cellular standard in Japan is
similar to IS-54 and IS-136 but in a different frequency band, and the GSM system in Europe is at a
different frequency than the GSM systems in the U.S. This proliferation of incompatible standards in
the U.S. and abroad makes it impossible to roam between systems nationwide or globally without using
multiple phones (and phone numbers).

All of the second generation digital cellular standards have been enhanced to support high rate
packet data services [15]. GSM systems provide data rates of up to 100 Kbps by aggregating all timeslots
together for a single user. This enhancement was called GPRS. A more fundamental enhancement, called
Enhanced Data Services for GSM Evolution (EDGE), further increases data rates using a high-level
modulation format combined with FEC coding. This modulation is more sensitive to fading effects, and
EDGE uses adaptive modulation and coding to mitigate this problem. Specifically, EDGE defines six
different modulation and coding combinations, each optimized to a different value of received SNR. The
received SNR is measured at the receiver and fed back to the transmitter, and the best modulation and
coding combination for this SNR value is used. The IS-54 and IS-136 systems currently provide data rates
of 40-60 Kbps by aggregating time slots and using high-level modulation. This new TDMA standard is
referred to as IS-136HS (high-speed). Many of these time-division systems are moving toward GSM, and
their corresponding enhancements to support high speed data. The IS-95 systems support higher data
using a time-division technique called high data rate (HDR)[16].

The third generation of cellular phones is based on a wideband CDMA standard developed within
the auspices of the International Telecommunications Union (ITU) [15]. The standard, initially called
International Mobile Telecommunications 2000 (IMT-2000), provides different data rates depending on
mobility and location, from 384 Kbps for pedestrian use to 144 Kbps for vehicular use to 2 Mbps for
indoor office use. The 3G standard is incompatible with 2G systems, so service providers must invest in
a new infrastructure before they can provide 3G service. The first 3G systems were deployed in Japan,
where they have experienced limited success with a somewhat slower growth than expected. One reason
that 3G services came out first in Japan is the process of 3G spectrum allocation, which in Japan was
awarded without much up-front cost. The 3G spectrum in both Europe and the U.S. is allocated based
on auctioning, thereby requiring a huge initial investment for any company wishing to provide 3G service.
European companies collectively paid over 100 billion dollars in their 3G spectrum auctions. There has
been much controversy over the 3G auction process in Europe, with companies charging that the nature
of the auctions caused enormous overbidding and that it will be very difficult if not impossible to reap a
profit on this spectrum. A few of the companies have already decided to write off their investment in 3G
spectrum and not pursue system buildout. In fact 3G systems have not yet come online in Europe, and
it appears that data enhancements to 2G systems may suffice to satisfy user demands. However, the 2G
spectrum in Europe is severely overcrowded, so users will either eventually migrate to 3G or regulations
will change so that 3G bandwidth can be used for 2G services (which is not currently allowed in Europe).
3G development in the U.S. has lagged far behind that of Europe. The available 3G spectrum in the U.S.
in only about half that available in Europe. Due to wrangling about which parts of the spectrum will be
used, the spectral auctions have been delayed. However, the U.S. does allow the 1G and 2G spectrum
to be used for 3G, and this flexibility may allow a more gradual rollout and investment than the more
restrictive 3G requirements in Europe. It appears that delaying 3G in the U.S. will allow U.S. service
providers to learn from the mistakes and successes in Europe and Japan.
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Efficient cellular system designs are interference-limited, i.e. the interference dominates the noise
floor since otherwise more users could be added to the system. As a result, any technique to reduce
interference in cellular systems leads directly to an increase in system capacity and performance. Some
methods for interference reduction in use today or proposed for future systems include cell sectorization
[6], directional and smart antennas [19], multiuser detection [20], and dynamic channel and resource
allocation [21, 22].

1.4.2 Cordless Phones

Cordless telephones first appeared in the late 1970’s and have experienced spectacular growth ever since.
Roughly half of the phones in U.S. homes today are cordless. Cordless phones were originally designed
to provide a low-cost low-mobility wireless connection to the PSTN, i.e. a short wireless link to replace
the cord connecting a telephone base unit and its handset. Since cordless phones compete with wired
handsets, their voice quality must be similar: initial cordless phones had poor voice quality and were
quickly discarded by users. The first cordless systems allowed only one phone handset to connect to each
base unit, and coverage was limited to a few rooms of a house or office. This is still the main premise
behind cordless telephones in the U.S. today, although these phones now use digital technology instead
of analog. In Europe and the Far East digital cordless phone systems have evolved to provide coverage
over much wider areas, both in and away from home, and are similar in many ways to today’s cellular
telephone systems.

Digital cordless phone systems in the U.S. today consist of a wireless handset connected to a single
base unit which in turn is connected to the PSTN. These cordless phones impose no added complexity
on the telephone network, since the cordless base unit acts just like a wireline telephone for networking
purposes. The movement of these cordless handsets is extremely limited: a handset must remain within
range of its base unit. There is no coordination with other cordless phone systems, so a high density of
these systems in a small area, e.g. an apartment building, can result in significant interference between
systems. For this reason cordless phones today have multiple voice channels and scan between these
channels to find the one with minimal interference. Spread spectrum cordless phones have also been
introduced to reduce interference from other systems and narrowband interference.

In Europe and the Far East the second generation of digital cordless phones (CT-2, for cordless
telephone, second generation) have an extended range of use beyond a single residence or office. Within
a home these systems operate as conventional cordless phones. To extend the range beyond the home
base stations, also called phone-points or telepoints, are mounted in places where people congregate, like
shopping malls, busy streets, train stations, and airports. Cordless phones registered with the telepoint
provider can place calls whenever they are in range of a telepoint. Calls cannot be received from the
telepoint since the network has no routing support for mobile users, although some newer CT-2 handsets
have built-in pagers to compensate for this deficiency. These systems also do not handoff calls if a user
moves between different telepoints, so a user must remain within range of the telepoint where his call
was initiated for the duration of the call. Telepoint service was introduced twice in the United Kingdom
and failed both times, but these systems grew rapidly in Hong Kong and Singapore through the mid
1990’s. This rapid growth deteriorated quickly after the first few years, as cellular phone operators cut
prices to compete with telepoint service. The main complaint about telepoint service was the incomplete
radio coverage and lack of handoff. Since cellular systems avoid these problems, as long as prices were
competitive there was little reason for people to use telepoint services. Most of these services have now
disappeared.

Another evolution of the cordless telephone designed primarily for office buildings is the European
DECT system. The main function of DECT is to provide local mobility support for users in an in-building
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private branch exchange (PBX). In DECT systems base units are mounted throughout a building, and
each base station is attached through a controller to the PBX of the building. Handsets communicate to
the nearest base station in the building, and calls are handed off as a user walks between base stations.
DECT can also ring handsets from the closest base station. The DECT standard also supports telepoint
services, although this application has not received much attention, probably due to the failure of CT-2
services. There are currently around 7 million DECT users in Europe, but the standard has not yet
spread to other countries.

The most recent advance in cordless telephone system design is the Personal Handyphone System
(PHS) in Japan. The PHS system is quite similar to a cellular system, with widespread base station
deployment supporting handoff and call routing between base stations. With these capabilities PHS does
not suffer from the main limitations of the CT-2 system. Initially PHS systems enjoyed one of the fastest
growth rates ever for a new technology. In 1997, two years after its introduction, PHS subscribers peaked
at about 7 million users, and has declined slightly since then due mainly to sharp price cutting by cellular
providers. The main difference between a PHS system and a cellular system is that PHS cannot support
call handoff at vehicle speeds. This deficiency is mainly due to the dynamic channel allocation procedure
used in PHS. Dynamic channel allocation greatly increases the number of handsets that can be serviced
by a single base station, thereby lowering the system cost, but it also complicates the handoff procedure.
It is too soon to tell if PHS systems will go the same route as CT-2. However, it is clear from the recent
history of cordless phone systems that to extend the range of these systems beyond the home requires
either the same functionality as cellular systems or a significantly reduced cost.

1.4.3 Wireless LANs

Wireless LANs provide high-speed data within a small region, e.g. a campus or small building, as users
move from place to place. Wireless devices that access these LANs are typically stationary or moving at
pedestrian speeds. Nearly all wireless LANs in the United States use one of the ISM frequency bands.
The appeal of these frequency bands, located at 900 MHz, 2.4 GHz, and 5.8 GHz, is that an FCC license
is not required to operate in these bands. However, this advantage is a double-edged sword, since many
other systems operate in these bands for the same reason, causing a great deal of interference between
systems. The FCC mitigates this interference problem by setting a limit on the power per unit bandwidth
for ISM-band systems. Wireless LANs can have either a star architecture, with wireless access points or
hubs placed throughout the coverage region, or a peer-to-peer architecture, where the wireless terminals
self-configure into a network.

Dozens of wireless LAN companies and products appeared in the early 1990’s to capitalize on the
“pent-up demand” for high-speed wireless data. These first generation wireless LANs were based on
proprietary and incompatible protocols, although most operated in the 900 MHz ISM band using direct
sequence spread spectrum with data rates on the order of 1-2 Mbps. Both star and peer-to-peer architec-
tures were used. The lack of standardization for these products led to high development costs, low-volume
production, and small markets for each individual product. Of these original products only a handful
were even mildly successful. Only one of the first generation wireless LANs, Motorola’s Altair, operated
outside the 900 MHz ISM band. This system, operating in the licensed 18 GHz band, had data rates on
the order of 6 Mbps. However, performance of Altair was hampered by the high cost of components and
the increased path loss at 18 GHz, and Altair was discontinued within a few years of its release.

The second generation of wireless LANs in the United States operate in the 2.4 GHz ISM band.
A wireless LAN standard for this frequency band, the IEEE 802.11b standard, was developed to avoid
some of the problems with the proprietary first generation systems. The standard specifies frequency
hopped spread spectrum with data rates of around 1.6 Mbps (raw data rates of 11 Mbps) and a range
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of approximately 500 ft. The network architecture can be either star or peer-to-peer. Many companies
have developed products based on the 802.11b standard, and these products are constantly evolving to
provide higher data rates and better coverage at very low cost. The market for 802.11b wireless LANs is
growing, and computer manufacturers have begun integrating the cards directly into their laptops. Many
companies and universities have installed 802.11b base stations throughout their locations, and even local
coffee houses are installing these base stations to offer wireless access to customers. Optimism is high
that the wireless LAN market is poised to take off (although this prediction has been made every year
since the inception of wireless LANs).

Perhaps the main impediment to the ultimate success of the 802.11b wireless LANs is the newest
wireless LAN standard, IEEE 802.11a. This wireless LAN operates in the 5 GHz unlicensed band, which
has much more spectrum and less interference than the 2.4 GHz band. The 802.11a standard is based
on OFDM modulation and provides on the order of 50 Mbps data rates. There was some initial concern
that 802.11a systems would be significantly more expensive than 802.11b systems, but in fact they are
becoming quite competitive in price.

In Europe wireless LAN development revolves around the HIPERLAN (high performance radio LAN)
standards. The first HIPERLAN standard, HIPERLAN Type 1, is similar to the IEEE 802.11a wireless
LAN standard and promises data rates of 20 Mbps at a range of 50 meters (150 feet). This system
operates in the 5 GHz band. Its network architecture is peer-to-peer, and the channel access mechanism
uses a variation of ALOHA with prioritization based on the lifetime of packets. The next generation of
HIPERLAN, HIPERLAN Type 2, is still under development, but the goal is to provide data rates on the
order of 54 Mbps with a similar range, and also to support access to cellular, ATM, and IP networks.
HIPERLAN Type 2 is also supposed to include support for Quality-of-Service (QoS), however it is not
yet clear how and to what extent this will be done.

1.4.4 Wide Area Wireless Data Services

Wide area wireless data services provide low rate wireless data to high-mobility users over a very large
coverage area. In these systems a given geographical region is serviced by base stations mounted on
towers, rooftops, or mountains. The base stations can be connected to a backbone wired network or
form a multihop ad hoc network. Initial data rates for these systems were below 10 Kbps but gradually
increased to 20 Kbps. There are two main players in wide area wireless data services: Motient and Bell
South Mobile Data (formerly RAM Mobile Data). Metricom provided a similar service with a network
architecture consisting of a large network of small inexpensive base stations with small coverage areas.
The increased efficiency of the small coverage areas allowed for higher data rates in Metricom, 76 Kbps,
than in the other wide-area wireless data systems. However, the high infrastructure cost for Metricom
eventually forced it into bankruptcy, and the system was shut down. Some of the infrastructure was
bought and is operating in a few araas as Ricochet.

The cellular digital packet data (CDPD) system is a wide area wireless data service overlayed on
the analog cellular telephone network. CDPD shares the FDMA voice channels of the analog systems,
since many of these channels are idle due to the growth of digital cellular. The CDPD service provides
packet data transmission at rates of 19.2 Kbps, and is available throughout the U.S. However, since newer
generations of cellular systems also provide data services, CDPD will likely be replaced by these newer
services.

All of these wireless data services have failed to grow as rapidly or to attract as many subscribers as
initially predicted, especially in comparison with the rousing success of wireless voice systems. There is
disagreement on why these systems have experienced such anemic growth. Data rates for these systems
are clearly low, especially in comparison with their wireline counterparts. Pricing for these services also
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remains high. There is a perceived lack of “killer applications” for wireless data: while voice communi-
cation on the move seems essential for a large part of the population, most people can wait until they
have access to a phone line or wired network for data exchange. This may change with the proliferation
of laptop and palmtop computers and the explosive demand for constant Internet access and email ex-
change. Optimists point to these factors as the drivers for wireless data but, as with wireless LANs, wide
area wireless data services have been the pot of gold around the corner for many years yet have so far
failed to deliver on these high expectations.

1.4.5 Fixed Wireless Access

Fixed wireless access provides wireless communications between a fixed access point and multiple ter-
minals. These systems were initially proposed to support interactive video service to the home, but the
application emphasis has now shifted to providing high speed data access (tens of Mbps) to the Internet,
the WWW, and to high speed data networks for both homes and businesses. In the U.S. two frequency
bands have been set aside for these systems: part of the 28 GHz spectrum is allocated for local distribution
systems (local multipoint distribution systems or LMDS) and a band in the 2 GHz spectrum is allocated
for metropolitan distribution systems (multichannel multipoint distribution services or MMDS). LMDS
represents a quick means for new service providers to enter the already stiff competition among wireless
and wireline broadband service providers. MMDS is a television and telecommunication delivery system
with transmission ranges of 30-50 Km. MMDS has the capability to deliver over one hundred digital
video TV channels along with telephony and access to emerging interactive services such as the Internet.
MMDS will mainly compete with existing cable and satellite systems. Europe is developing a standard
similar to MMDS called Hiperaccess.

1.4.6 Paging Systems

Paging systems provide very low rate one-way data services to highly mobile users over a very wide
coverage area. Paging systems have experienced steady growth for many years and currently serve about
56 million customers in the United States. However, the popularity of paging systems is declining as
cellular systems become cheaper and more ubiquitous. In order to remain competitive paging companies
have slashed prices, and few of these companies are currently profitable. To reverse their declining
fortunes, a consortium of paging service providers have recently teamed up with Microsoft and Compaq
to incorporate paging functionality and Internet access into palmtop computers [2].

Paging systems broadcast a short paging message simultaneously from many tall base stations or
satellites transmitting at very high power (hundreds of watts to kilowatts). Systems with terrestrial
transmitters are typically localized to a particular geographic area, such as a city or metropolitan region,
while geosynchronous satellite transmitters provide national or international coverage. In both types of
systems no location management or routing functions are needed, since the paging message is broad-
cast over the entire coverage area. The high complexity and power of the paging transmitters allows
low-complexity, low-power, pocket paging receivers with a long usage time from small and lightweight
batteries. In addition, the high transmit power allows paging signals to easily penetrate building walls.
Paging service also costs less than cellular service, both for the initial device and for the monthly usage
charge, although this price advantage has declined considerably in recent years. The low cost, small and
lightweight handsets, long battery life, and ability of paging devices to work almost anywhere indoors or
outdoors are the main reasons for their appeal.

Some paging services today offer rudimentary (1 bit) answer-back capabilities from the handheld
paging device. However, the requirement for two-way communication destroys the asymmetrical link
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advantage so well exploited in paging system design. A paging handset with answer-back capability
requires a modulator and transmitter with sufficient power to reach the distant base station. These
requirements significantly increase the size and weight and reduce the usage time of the handheld pager.
This is especially true for paging systems with satellite base stations, unless terrestrial relays are used.

1.4.7 Satellite Networks

Satellite systems provide voice, data, and broadcast services with widespread, often global, coverage to
high-mobility users as well as to fixed sites. Satellite systems have the same basic architecture as cellular
systems, except that the cell base-stations are satellites orbiting the earth. Satellites are characterized
by their orbit distance from the earth. There are three main types of satellite orbits: low-earth orbit
(LEOs) at 500-2000 Kms, medium-earth orbit (MEO) at 10,000 Kms, and geosynchronous orbit (GEO)
at 35,800 Kms. A geosynchronous satellite has a large coverage area that is stationary over time, since
the earth and satellite orbits are synchronous. Satellites with lower orbits have smaller coverage areas,
and these coverage areas change over time so that satellite handoff is needed for stationary users or fixed
point service.

Since geosynchronous satellites have such large coverage areas just a handful of satellites are needed
for global coverage. However, geosynchronous systems have several disadvantages for two-way communi-
cation. It takes a great deal of power to reach these satellites, so handsets are typically large and bulky.
In addition, there is a large round-trip propagation delay: this delay is quite noticeable in two-way voice
communication. Recall also from Section 15 that high-capacity cellular systems require small cell sizes.
Since geosynchronous satellites have very large cells, these systems have small capacity, high cost, and
low data rates, less than 10 Kbps. The main geosynchronous systems in operation today are the global
Inmarsat system, MSAT in North America, Mobilesat in Australia, and EMS and LLM in Europe.

The trend in current satellite systems is to use the lower LEO orbits so that lightweight handheld
devices can communicate with the satellites and propagation delay does not degrade voice quality. The
best known of these new LEO systems are Globalstar and Teledesic. Globalstar provides voice and data
services to globally-roaming mobile users at data rates under 10 Kbps. The system requires roughly 50
satellites to maintain global coverage. Teledesic uses 288 satellites to provide global coverage to fixed-point
users at data rates up to 2 Mbps. Teledesic is set to be deployed in 2005. The cell size for each satellite
in a LEO system is much larger than terrestrial macrocells or microcells, with the corresponding decrease
in capacity associated with large cells. Cost of these satellites, to build, to launch, and to maintain, is
also much higher than that of terrestrial base stations, so these new LEO systems are unlikely to be
cost-competitive with terrestrial cellular and wireless data services. Although these LEO systems can
certainly complement these terrestrial systems in low-population areas, and are also appealing to travelers
desiring just one handset and phone number for global roaming, it remains to be seen if there are enough
such users willing to pay the high cost of satellite services to make these systems economically viable. In
fact, Iridium, the largest and best-known of the LEO systems, was forced into bankruptcy and disbanded.

1.4.8 Bluetooth

Bluetooth is a cable-replacement RF technology for short range connections between wireless devices.
The Bluetooth standard is based on a tiny microchip incorporating a radio transceiver that is built into
digital devices. The transceiver takes the place of a connecting cable for devices such as cell phones,
laptop and palmtop computers, portable printers and projectors, and network access points. Bluetooth
is mainly for short range communications, e.g. from a laptop to a nearby printer or from a cell phone
to a wireless headset. Its normal range of operation is 10 m (at 1 mW transmit power), and this range
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can be increased to 100 m by increasing the transmit power to 100 mW. The system operates in the
unregulated 2.4 GHz frequency band, hence it can be used worldwide without any licensing issues. The
Bluetooth standard provides 1 data channel at 721 Kbps and up to three voice channels at 56 Kbps for
an aggregate bit rate of 1 Mbps. Networking is done via a packet switching protocol based on frequency
hopping at 1600 hops per second.

The Bluetooth standard was developed jointly by 3 Com, Ericsson, Intel, IBM, Lucent, Microsoft,
Motorola, Nokia, and Toshiba. The standard has now been adopted by over 1300 manufacturers, and
products compatible with Bluetooth are starting to appear on the market now. Specifically, the following
products all use Bluetooth technology: a wireless headset for cell phones (Ericsson), a wireless USB or
RS232 connector (RTX Telecom, Adayma), wireless PCMCIA cards (IBM), and wireless settop boxes
(Eagle Wireless), to name just a few. More details on Bluetooth, including Bluetooth products currently
available or under development, can be found at the website http://www.bluetooth.com.

1.4.9 HomeRF

HomeRF is a working group developing an open industry standard for wireless digital communication
between PCs, PDAs, intelligent home appliances and consumer electronic devices anywhere in and around
the home. The working group was initiated by Intel, HP, Microsoft, Compaq, and IBM. The main
component of the HomeRF protocol is its Shared Wireless Access Protocol (SWAP), which operates in
the unregulated 2.4 GHz frequency band (same band as Bluetooth).

The SWAP protocol is designed to carry both voice and data traffic and to interoperate with the
PSTN and the Internet. The bandwidth sharing is enabled by frequency hopped spread spectrum at 50
hops/sec, however it also supports a TDMA service for delivery of interactive voice and other time-critical
services, and a CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) service for high speed
packet data. The transmit power for HomeRF is specified at 100 mW which provides a data rate of 1-2
Mbps. However, in August 2000 the FCC okayed a five-fold increase in the HomeRF bandwidth, which
will increase data rates to 10 Mbps. The range of HomeRF covers a typical home and backyard. Compaq
and Intel released products in the spring of 2000 based on HomeRF in the $100 range, and other products
in this price range are expected soon. More details on HomeRF can be found at http://www.homerf.org.

1.4.10 Other Wireless Systems and Applications

Many other commercial systems using wireless technology are on the market today. Remote sensor net-
works that collect data from unattended sensors and transmit this data back to a central processing
location are being used for both indoor (equipment monitoring, climate control) and outdoor (earth-
quake sensing, remote data collection) applications. Satellite systems that provide vehicle tracking and
dispatching (OMNITRACs) are very successful. Satellite navigation systems (the Global Positioning
System or GPS) are also widely used for both military and commercial purposes. A wireless system for
Digital Audio Broadcasting (DAB) has been available in Europe for quite some time and has recently
been introduced in the U.S. as satellite radio. New systems and standards are constantly being developed
and introduced, and this trend seems to be accelerating.
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1.5 The Wireless Spectrum

1.5.1 Methods for Spectrum Allocation

Most countries have government agencies responsible for allocating and controlling the use of the radio
spectrum. In the United States spectrum allocation is controlled by the Federal Communications Com-
mission (FCC) for commercial use and by the Office of Spectral Management (OSM) for military use. The
government decides how much spectrum to allocate between commercial and military use. Historically
the FCC allocated spectral blocks for specific uses and assigned licenses to use these blocks to specific
groups or companies. For example, in the 1980s the FCC allocated frequencies in the 800 MHz band
for analog cellular phone service, and provided spectral licenses to two companies in each geographical
area based on a number of criteria. While the FCC still typically allocates spectral blocks for specific
purposes, over the last decade they have turned to spectral auctions for assigning licenses in each block
to the highest bidder. While some argue that this market-based method is the fairest way for the gov-
ernment to allocate the limited spectral resource, and it provides significant revenue to the government
besides, there are others who believe that this mechanism stifles innovation, limits competition, and hurts
technology adoption. Specifically, the high cost of spectrum dictates that only large conglomerates can
purchase it. Moreover, the large investment required to obtain spectrum delays the ability to invest in
infrastructure for system rollout and results in very high initial prices for the end user. The 3G spectral
auctions in Europe, in which several companies have already defaulted, have provided fuel to the fire
against spectral auctions.

In addition to spectral auctions, the FCC also sets aside specific frequency bands that are free to
use according to a specific set of etiquette rules. The rules may correspond to a specific communications
standard, power levels, etc. The purpose of these “free bands” is to encourage innovation and low-cost
implementation. Two of the most important emerging wireless systems, 802.11b wireless LANs and
Bluetooth, co-exist in the free National Information Highway (NIH) band set aside at 2.5 GHz. However,
one difficulty with free bands is that they can be killed by their own success: if a given system is widely
used in a given band, it will generate much interference to other users colocated in that band. Satellite
systems cover large areas spanning many countries and sometimes the globe. For wireless systems that
span multiple countries, spectrum is allocated by the International Telecommunications Union Radio
Communications group (ITU-R). The standards arm of this body, ITU-T, adopts telecommunication
standards for global systems that must interoperate with each other across national boundaries.

1.5.2 Spectrum Allocations for Existing Systems

Most wireless applications reside in the radio spectrum between 30 MHz and 30 GHz. These frequencies
are natural for wireless systems since they are not affected by the earth’s curvature, require only mod-
erately sized antennas, and can penetrate the ionosphere. Note that the required antenna size for good
reception is inversely proportional to the signal frequency, so moving systems to a higher frequency allows
for more compact antennas. However, received signal power is proportional to the inverse of frequency
squared, so it is harder to cover large distances with higher frequency signals. These tradeoffs will be
examined in more detail in later chapters.

As discussed in the previous section, spectrum is allocated either in licensed bands (which the FCC
assigns to specific operators) or in unlicensed bands (which can be used by any operator subject to
certain operational requirements). The following table shows the licensed spectrum allocated to major
commercial wireless systems in the U.S. today.
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AM Radio 535-1605 KHz
FM Radio 88-108 MHz

Broadcast TV (Channels 2-6) 54-88 MHz
Broadcast TV (Channels 7-13) 174-216 MHz

Broadcast TV (UHF) 470-806 MHz
3G Broadband Wireless 746-764 MHz, 776-794 MHz
3G Broadband Wireless 1.7-1.85 MHz, 2.5-2.69 MHz

Analog and 2G Digital Cellular Phones 806-902 MHz
Personal Communications Service (2G Cell Phones) 1.85-1.99 GHz

Wireless Communications Service 2.305-2.32 GHz, 2.345-2.36 GHz
Satellite Digital Radio 2.32-2.325 GHz

Multichannel Multipoint Distribution Service (MMDS) 2.15-2.68 GHz
Digital Broadcast Satellite (Satellite TV) 12.2-12.7 GHz

Digital Electronic Message Service (DEMS) 24.25-24.45 GHz, 25.05-25.25 GHz
Teledesic 18.8-19.3 GHz, 28.6-29.1 GHz

Local Multipoint Distribution Service (LMDS) 27.5-29.5 GHz, 31-31.3 GHz
Fixed Wireless Services 38.6-40 GHz

Note that digital TV is slated for the same bands as broadcast TV. By 2006 all broadcasters are
expected to switch from analog to digital transmission. Also, the 3G broadband wireless spectrum is
currently allocated to UHF TV stations 60-69, but is slated to be reallocated for 3G. Both analog and
2G digital cellular services occupy the same cellular band at 800 MHz, and the cellular service providers
decide how much of the band to allocate between digital and analog service.

Unlicensed spectrum is allocated by the governing body within a given country. Often countries try
to match their frequency allocation for unlicensed use so that technology developed for that spectrum is
compatible worldwide. The following table shows the unlicensed spectrum allocations in the U.S.

ISM Band I (Cordless phones, 1G WLANs) 902-928 MHz
ISM Band II (Bluetooth, 802.11b WLANs) 2.4-2.4835 GHz

ISM Band III (Wireless PBX) 5.725-5.85 GHz
NII Band I (Indoor systems, 802.11a WLANs) 5.15-5.25 GHz

NII Band II (short outdoor and campus applications) 5.25-5.35 GHz
NII Band III (long outdoor and point-to-point links) 5.725-5.825 GHz

ISM Band I has licensed users transmitting at high power that interfere with the unlicensed users.
Therefore, the requirements for unlicensed use of this band is highly restrictive and performance is
somewhat poor. The NII bands were set aside recently to provide a total of 300 MHz of spectrum with
very few restrictions. It is expected that many new applications will take advantage of this large amount
of unlicensed spectrum.

1.6 Standards

Communication systems that interact with each other require standardization. Standards are typically
decided on by national or international committees: in the U.S. the TIA plays this role. These committees
adopt standards that are developed by other organizations. The IEEE is the major player for standards
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development in the United States, while ETSI plays this role in Europe. Both groups follow a lengthy
process for standards development which entails input from companies and other interested parties, and
a long and detailed review process. The standards process is a large time investment, but companies
participate since if they can incorporate their ideas into the standard, this gives them an advantage in
developing the resulting system. In general standards do not include all the details on all aspects of the
system design. This allows companies to innovate and differentiate their products from other standardized
systems. The main goal of standardization is for systems to interoperate with other systems following
the same standard.

In addition to insuring interoperability, standards also enable economies of scale and pressure prices
lower. For example, wireless LANs typically operate in the unlicensed spectral bands, so they are not
required to follow a specific standard. The first generation of wireless LANs were not standardized, so
specialized components were needed for many systems, leading to excessively high cost which, coupled
with poor performance, led to very limited adoption. This experience led to a strong push to standardize
the next wireless LAN generation, which resulted in the highly successful IEEE 802.11b standard widely
used today. Future generations of wireless LANs are expected to be standardized, including the now
emerging IEEE 802.11a standard in the 5 GHz band.

There are, of course, disadvantages to standardization. The standards process is not perfect, as
company participants often have their own agenda which does not always coincide with the best technology
or best interests of the consumers. In addition, the standards process must be completed at some point,
after which time it becomes more difficult to add new innovations and improvements to an existing
standard. Finally, the standards process can become very politicized. This happened with the second
generation of cellular phones in the U.S., which ultimately led to the adoption of two different standards,
a bit of an oxymoron. The resulting delays and technology split put the U.S. well behind Europe in the
development of 2nd generation cellular systems. Despite its flaws, standardization is clearly a necessary
and often beneficial component of wireless system design and operation. However, it would benefit
everyone in the wireless technology industry if some of the disadvantages in the standardization process
could be mitigated.
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Chapter 2

Path Loss and Shadowing

The wireless radio channel poses a severe challenge as a medium for reliable high-speed communication.
It is not only susceptible to noise, interference, and other channel impediments, but these impediments
change over time in unpredictable ways due to user movement. In this chapter we will characterize the
variation in received signal power over distance due to path loss and shadowing. Path loss is caused by
dissipation of the power radiated by the transmitter as well as effects of the propagation channel. Path
loss models generally assume that path loss is the same at a given transmit-receive distance1. Shadowing
is caused by obstacles between the transmitter and receiver that absorb power. When the obstacle
absorbs all the power, the signal is blocked. Variation due to path loss occurs over very large distances
(100-1000 meters), whereas variation due to shadowing occurs over distances proportional to the length
of the obstructing object (10-100 meters in outdoor environments and less in indoor environments). Since
variations due to path loss and shadowing occur over relatively large distances, this variation is sometimes
refered to as large-scale propagation effects or local mean attenuation. Chapter 3 will deal with
variation due to the constructive and destructive addition of multipath signal components. Variation due
to multipath occurs over very short distances, on the order of the signal wavelength, so these variations are
sometimes refered to as small-scale propagation effects or multipath fading. Figure 2.1 illustrates
the ratio of the received-to-transmit power in dB versus log-distance for the combined effects of path loss,
shadowing, and multipath.

After a brief introduction and description of our signal model, we present the simplest model for
signal propagation: free space path loss. A signal propagating between two points with no attenuation or
reflection follows the free space propagation law. We then describe ray tracing propagation models. These
models are used to approximate wave propagation according to Maxwell’s equations, and are accurate
models when the number of multipath components is small and the physical environment is known. Ray
tracing models depend heavily on the geometry and dielectric properties of the region through which
the signal propagates. We therefore also present some simple generic models with a few parameters that
are commonly used in practice for system analysis and “back-of-the-envelope” system design. When the
number of multipath components is large, or the geometry and dielectric properties of the propagation
environment are unknown, statistical models must be used. These statistical multipath models will be
described in Chapter 3.

While this chapter gives a brief overview of channel models for path loss and shadowing, comprehen-
sive coverage of channel and propagation models at different frequencies of interest merits a book in its
own right, and in fact there are several excellent texts on this topic [3, 4]. Channel models for specialized
systems, e.g. multiple antenna (MIMO) and ultrawideband (UWB) systems, can be found in [62, 63].

1This assumes that the path loss model does not include shadowing effects
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Figure 2.1: Path Loss, Shadowing and Multipath versus Distance.

2.1 Radio Wave Propagation

The initial understanding of radio wave propagation goes back to the pioneering work of James Clerk
Maxwell, who in 1864 formulated the electromagnetic theory of light and predicted the existence of radio
waves. In 1887, the physical existence of these waves was demonstrated by Heinrich Hertz. However, Hertz
saw no practical use for radio waves, reasoning that since audio frequencies were low, where propagation
was poor, radio waves could never carry voice. The work of Maxwell and Hertz initiated the field of radio
communications: in 1894 Oliver Lodge used these principles to build the first wireless communication
system, however its transmission distance was limited to 150 meters. By 1897 the entrepreneur Guglielmo
Marconi had managed to send a radio signal from the Isle of Wight to a tugboat 18 miles away, and in
1901 Marconi’s wireless system could traverse the Atlantic ocean. These early systems used telegraph
signals for communicating information. The first transmission of voice and music was done by Reginald
Fessenden in 1906 using a form of amplitude modulation, which got around the propagation limitations
at low frequencies observed by Hertz by translating signals to a higher frequency, as is done in all wireless
systems today.

Electromagnetic waves propagate through environments where they are reflected, scattered, and
diffracted by walls, terrain, buildings, and other objects. The ultimate details of this propagation can
be obtained by solving Maxwell’s equations with boundary conditions that express the physical charac-
teristics of these obstructing objects. This requires the calculation of the Radar Cross Section (RCS) of
large and complex structures. Since these calculations are difficult, and many times the necessary param-
eters are not available, approximations have been developed to characterize signal propagation without
resorting to Maxwell’s equations.

The most common approximations use ray-tracing techniques. These techniques approximate the
propagation of electromagnetic waves by representing the wavefronts as simple particles: the model
determines the reflection and refraction effects on the wavefront but ignores the more complex scattering
phenomenon predicted by Maxwell’s coupled differential equations. The simplest ray-tracing model is the
two-ray model, which accurately describes signal propagation when there is one direct path between the
transmitter and receiver and one reflected path. The reflected path typically bounces off the ground, and
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the two-ray model is a good approximation for propagation along highways, rural roads, and over water.
We next consider more complex models with additional reflected, scattered, or diffracted components.
Many propagation environments are not accurately reflected with ray tracing models. In these cases it
is common to develop analytical models based on empirical measurements, and we will discuss several of
the most common of these empirical models.

Often the complexity and variability of the radio channel makes it difficult to obtain an accurate
deterministic channel model. For these cases statistical models are often used. The attenuation caused
by signal path obstructions such as buildings or other objects is typically characterized statistically, as
described in Section 2.7. Statistical models are also used to characterize the constructive and destructive
interference for a large number of multipath components, as described in Chapter 3. Statistical models
are most accurate in environments with fairly regular geometries and uniform dielectric properties. In-
door environments tend to be less regular than outdoor environments, since the geometric and dielectric
characteristics change dramatically depending on whether the indoor environment is an open factory, cu-
bicled office, or metal machine shop. For these environments computer-aided modeling tools are available
to predict signal propagation characteristics [1].

2.2 Transmit and Receive Signal Models

Our models are developed mainly for signals in the UHF and SHF bands, from .3-3 GHz and 3-30
GHz, respectively. This range of frequencies is quite favorable for wireless system operation due to
its propagation characteristics and relatively small required antenna size. We assume the transmission
distances on the earth are small enough so as not to be affected by the earth’s curvature.

All transmitted and received signals we consider are real. That is because modulators and demod-
ulators are built using oscillators that generate real sinusoids (not complex exponentials). Thus, the
transmitted signal output from a modulator is a real signal. Similarly, the demodulator only extracts the
real part of the signal at its input. However, we typically model channels as having a complex frequency
response due to the nature of the Fourier transform. As a result, real modulated and demodulated signals
are often represented as the real part of a complex signal to facilitate analysis. This model gives rise to
the complex baseband representation of bandpass signals, which we use for our transmitted and received
signals. More details on the complex baseband representation for bandpass signals and systems can be
found in Appendix A.

We model the transmitted signal as

s(t) = <
{
u(t)ej(2πfct+φ0)

}
= <{u(t)} cos(2πfct+ φ0) −={u(t)} sin(2πfct+ φ0)
= x(t) cos(2πfct+ φ0) − y(t) sin(2πfct+ φ0), (2.1)

where u(t) = x(t) + jy(t) is a complex baseband signal with in-phase component x(t) = <{u(t)},
quadrature component y(t) = ={u(t)}, bandwidth B, and power Pu. The signal u(t) is called the
complex envelope or complex lowpass equivalent signal of s(t). We call u(t) the complex envelope
of s(t) since the magnitude of u(t) is the magnitude of s(t) and the phase of u(t) is the phase of s(t)
relative to the carrier frequency fc and initial phase offset φ0. This is a common representation for
bandpass signals with bandwidth B << fc, as it allows signal manipulation via u(t) irrespective of the
carrier frequency and phase. The power in the transmitted signal s(t) is Pt = Pu/2.

The received signal will have a similar form:

r(t) = <
{
v(t)ej(2πfct+φ0)

}
, (2.2)
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where the complex baseband signal v(t) will depend on the channel through which s(t) propagates. In
particular, as discussed in Appendix A, if s(t) is transmitted through a time-invariant channel then v(t) =
u(t) ∗ c(t), where c(t) is the equivalent lowpass channel impulse response for the channel. Time-varying
channels will be treated in Chapter 3. The received signal may have a Doppler shift of fD = v cos θ/λ
associated with it, where θ is the arrival angle of the received signal relative to the direction of motion,
v is the receiver velocity, and λ = c/fc is the signal wavelength (c = 3 × 108 m/s is the speed of light).
The geometry associated with the Doppler shift is shown in Fig. 2.2. The Doppler shift results from
the fact that transmitter or receiver movement over a short time interval ∆t causes a slight change in
distance ∆d = v∆t cos θ that the transmitted signal needs to travel to the receiver. The phase change
due to this path length difference is ∆φ = 2πv∆t cos θ/λ. The Doppler frequency is then obtained from
the relationship between signal frequency and phase:

fD =
1
2π

∆φ
∆t

= v cos θ/λ. (2.3)

If the receiver is moving towards the transmitter, i.e. −π/2 ≤ θ ≤ π/2, then the Doppler frequency
is positive, otherwise it is negative. We will ignore the Doppler term in the free-space and ray tracing
models of this chapter, since for typical urban vehicle speeds (60 mph) and frequencies (around 1 GHz), it
is less than 70 Hz [2]. However, we will include Doppler effects in Chapter 3 on statistical fading models.

Direction
of Motion

θ
v

∆d

∆t

Transmitted
   Sigmal

Figure 2.2: Geometry Associated with Doppler Shift.

Suppose s(t) of power Pt is transmitted through a given channel, with corresponding received signal
r(t) of power Pr, where Pr is averaged over any random variations due to shadowing. We define the
linear path loss of the channel as the ratio of transmit power to receive power:

PL =
Pt
Pr
. (2.4)

We define the path loss of the channel as the dB value of the linear path loss or, equivalently, the
difference in dB between the transmitted and received signal power:

PL (dB) = 10 log10

Pt
Pr

(2.5)
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In general path loss is a nonnegative number since the channel does not contain active elements, and
thus can only attenuate the signal. The path gain in dB is defined as the negative of the path loss:
PG = −PL = 10 log10(Pr/Pt), which is generally a negative number. With shadowing the received power
will include the effects of path loss and an additional random component due to blockage from objects,
as we discuss in Section 2.7.

2.3 Free-Space Path Loss

Consider a signal transmitted through free space to a receiver located at distance d from the transmitter.
Assume there are no obstructions between the transmitter and receiver and the signal propagates along a
straight line between the two. The channel model associated with this transmission is called a line-of-sight
(LOS) channel, and the corresponding received signal is called the LOS signal or ray. Free-space path
loss introduces a complex scale factor [3], resulting in the received signal

r(t) = <
{
λ
√
Gle

−j(2πd/λ)

4πd
u(t)ej2πfct

}
(2.6)

where
√
Gl is the product of the transmit and receive antenna field radiation patterns in the LOS direction.

The phase shift e−j(2πd/λ) is due to the distance d the wave travels, and can also be written in terms of
the associated delay τ = d/c as e−j(2πfcτ), where c is the speed of light.

The power in the transmitted signal s(t) is Pt, so the ratio of received to transmitted power computed
from (2.6) is

Pr
Pt

=

[√
Glλ

4πd

]2

. (2.7)

Thus, the received signal power falls off inversely proportional to the square of the distance d between the
transmit and receive antennas. We will see in the next section that for other signal propagation models,
the received signal power falls off more quickly relative to this distance. The received signal power is also
proportional to the square of the signal wavelength, so as the carrier frequency increases, the received
power decreases. This dependence of received power on the signal wavelength λ is due to the effective
area of the receive antenna [3]. However, the antenna gain of highly directional antennas can increase
with frequency, so that receive power may actually increase with frequency for highly directional links.
The received power can be expressed in dBm as

Pr (dBm) = Pt (dBm) + 10 log10(Gl) + 20 log10(λ) − 20 log10(4π) − 20 log10(d). (2.8)

Free-space path loss is defined as the path loss of the free-space model:

PL (dB) = 10 log10
Pt
Pr

= −10 log10
Glλ

2

(4πd)2
. (2.9)

The free-space path gain is thus

PG = −PL = 10 log10

Glλ
2

(4πd)2
. (2.10)

Example 2.1: Consider an indoor wireless LAN with fc = 900 MHz, cells of radius 10 m, and nondi-
rectional antennas. Under the free-space path loss model, what transmit power is required at the access
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point such that all terminals within the cell receive a minimum power of 10 µW. How does this change
if the system frequency is 5 GHz?

Solution: We must find the transmit power such that the terminals at the cell boundary receive the
minimum required power. We obtain a formula for the required transmit power by inverting (2.7) to
obtain:

Pt = Pr

[
4πd√
Glλ

]2
.

Substituting in Gl = 1 (nondirectional antennas), λ = c/fc = .33 m, d = 100 m, and Pt = 10µW yields
Pt = 145.01W = 21.61 dBW (Recall that P Watts equals 10 log10[P ] dbW, dB relative to one Watt, and
10 log10[P/.001] dBm, dB relative to one milliwatt). At 5 GHz only λ = .06 changes, so Pt = 4.39 KW
= 36.42 dBW.

2.4 Ray Tracing

In a typical urban or indoor environment, a radio signal transmitted from a fixed source will encounter
multiple objects in the environment that produce reflected, diffracted, or scattered copies of the trans-
mitted signal, as shown in Figure 2.3. These additional copies of the transmitted signal, called multipath
signal components, can be attenuated in power, delayed in time, and shifted in phase and/or frequency
from the LOS signal path at the receiver. The multipath and transmitted signal are summed together at
the receiver, which often produces distortion in the received signal relative to the transmitted signal.

Figure 2.3: Reflected, Diffracted, and Scattered Wave Components

In ray tracing we assume a finite number of reflectors with known location and dielectric properties.
The details of the multipath propagation can then be solved using Maxwell’s equations with appropriate
boundary conditions. However, the computational complexity of this solution makes it impractical as a
general modeling tool. Ray tracing techniques approximate the propagation of electromagnetic waves by
representing the wavefronts as simple particles. Thus, the reflection, diffraction, and scattering effects
on the wavefront are approximated using simple geometric equations instead of Maxwell’s more complex
wave equations. The error of the ray tracing approximation is smallest when the receiver is many
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wavelengths from the nearest scatterer, and all the scatterers are large relative to a wavelength and fairly
smooth. Comparison of the ray tracing method with empirical data shows it to accurately model received
signal power in rural areas [9], along city streets where both the transmitter and receiver are close to
the ground [7, 6, 9], or in indoor environments with appropriately adjusted diffraction coefficients [8].
Propagation effects besides received power variations, such as the delay spread of the multipath, are not
always well-captured with ray tracing techniques [10].

If the transmitter, receiver, and reflectors are all immobile then the impact of the multiple received
signal paths, and their delays relative to the LOS path, are fixed. However, if the source or receiver are
moving, then the characteristics of the multiple paths vary with time. These time variations are deter-
ministic when the number, location, and characteristics of the reflectors are known over time. Otherwise,
statistical models must be used. Similarly, if the number of reflectors is very large or the reflector surfaces
are not smooth then we must use statistical approximations to characterize the received signal. We will
discuss statistical fading models for propagation effects in Chapter 3. Hybrid models, which combine ray
tracing and statistical fading, can also be found in the literature [12], however we will not describe them
here.

The most general ray tracing model includes all attenuated, diffracted, and scattered multipath
components. This model uses all of the geometrical and dielectric properties of the objects surrounding
the transmitter and receiver. Computer programs based on ray tracing such as Lucent’s Wireless Systems
Engineering software (WiSE), Wireless Valley’s SitePlanner©R, and Marconi’s Planet©R EV are widely used
for system planning in both indoor and outdoor environments. In these programs computer graphics are
combined with aerial photographs (outdoor channels) or architectural drawings (indoor channels) to
obtain a 3D geometric picture of the environment [1].

The following sections describe several ray tracing models of increasing complexity. We start with a
simple two-ray model that predicts signal variation resulting from a ground reflection interfering with the
LOS path. This model characterizes signal propagation in isolated areas with few reflectors, such as rural
roads or highways. It is not typically a good model for indoor environments. We then present a ten-ray
reflection model that predicts the variation of a signal propagating along a straight street or hallway.
Finally, we describe a general model that predicts signal propagation for any propagation environment.
The two-ray model only requires information about the antenna heights, while the ten-ray model requires
antenna height and street/hallway width information, and the general model requires these parameters
as well as detailed information about the geometry and dielectric properties of the reflectors, diffractors,
and scatterers in the environment.

2.4.1 Two-Ray Model

The two-ray model is used when a single ground reflection dominates the multipath effect, as illustrated
in Figure 2.4. The received signal consists of two components: the LOS component or ray, which is just
the transmitted signal propagating through free space, and a reflected component or ray, which is the
transmitted signal reflected off the ground.

The received LOS ray is given by the free-space propagation loss formula (2.6). The reflected ray is
shown in Figure 2.4 by the segments x and x′. If we ignore the effect of surface wave attenuation2 then,
by superposition, the received signal for the two-ray model is

r2ray(t) = <
{
λ

4π

[√
Glu(t)ej(2πl/λ)

l
+
R
√
Gru(t− τ)e−j2π(x+x′)/λ

x+ x′

]
ej(2πfct+φ0)

}
, (2.11)

2This is a valid approximation for antennas located more than a few wavelengths from the ground.
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Figure 2.4: Two-Ray Model.

where τ = (x+x′− l)/c is the time delay of the ground reflection relative to the LOS ray,
√
Gl =

√
GaGb

is the product of the transmit and receive antenna field radiation patterns in the LOS direction, R is the
ground reflection coefficient, and

√
Gr =

√
GcGd is the product of the transmit and receive antenna field

radiation patterns corresponding to the rays of length x and x′, respectively. The delay spread of the
two-ray model equals the delay between the LOS ray and the reflected ray: (x+ x′ − l)/c.

If the transmitted signal is narrowband relative to the delay spread (τ << B−1
u ) then u(t) ≈ u(t−τ).

Thus, the received power of the two-ray model for narrowband transmission is

Pr = Pt

[
λ

4π

]2 ∣∣∣∣∣
√
Gl
l

+
R
√
Gre

j∆φ

r + r′

∣∣∣∣∣
2

, (2.12)

where ∆φ = 2π(r′+r−l)/λ is the phase difference between the two received signal components. Equation
(2.12) has been shown to agree very closely with empirical data [13]. If d denotes the horizontal separation
of the antennas, ht denotes the transmitter height, and hr denotes the receiver height, then using geometry
we can show that

x+ x′ − l =
√

(ht + hr)2 + d2 −
√

(ht − hr)2 + d2. (2.13)

When d is very large compared to ht + hr we can use a Taylor series approximation in (2.13) to get

∆φ =
2π(x+ x′ − l)

λ
≈ 4πhthr

λd
. (2.14)

The ground reflection coefficient is given by [2, 14]

R =
sin θ − Z

sin θ + Z
, (2.15)

where

Z =

{ √
εr − cos2 θ/εr for vertical polarization√
εr − cos2 θ for horizontal polarization

, (2.16)

and εr is the dielectric constant of the ground. For earth or road surfaces this dielectric constant is
approximately that of a pure dielectric (for which εr is real with a value of about 15).

We see from Figure 2.4 and (2.15) that for asymptotically large d, x + x′ ≈ l ≈ d, θ ≈ 0, Gl ≈ Gr,
and R ≈ −1. Substituting these approximations into (2.12) yields that, in this asymptotic limit, the
received signal power is approximately

Pr ≈
[
λ
√
Gl

4πd

]2 [
4πhthr
λd

]2
Pt =

[√
Glhthr
d2

]2

Pt, (2.17)
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or, equivalently, the dB attenuation is given by

Pr (dBm) = Pt (dBm) + 10 log10(Gl) + 20 log10(hthr) − 40 log10(d). (2.18)

Thus, in the limit of asymptotically large d, the received power falls off inversely with the fourth power
of d and is independent of the wavelength λ. The received signal becomes independent of λ since the
cancellation of the two multipath rays changes the effective area of the receive antenna. A plot of (2.18)
as a function of distance is illustrated in Figure 2.5 for f = 900MHz, R=-1, ht = 50m, hr = 2m, Gl = 1,
Gr = 1 and transmit power normalized so that the plot starts at 0 dBm. This plot can be separated into
three segments. For small distances d < ht, the path loss is roughly flat and proportional to 1/(d2 + h2

t )
since, at these small distances, the distance between the transmitter and receiver is D =

√
d2 + (ht − hr)2

and thus 1/D2 ≈ 1/(d2 + h2
t ) for ht >> hr, which is typically the case. Then, for distances bigger than

ht and up to a certain critical distance dc, the wave experiences constructive and destructive interference
of the two rays, resulting in a wave pattern with a sequence of maxima and minima. These maxima
and minima are also refered to as small-scale or multipath fading, discussed in more detail in the next
chapter. At the critical distance dc the final maximum is reached, after which the signal power falls off
proportionally to d−4. At this critical distance the signal components only combine destructively, so they
are out of phase by at least π. An approximation for dc can be obtained by setting ∆φ = π in (2.14),
obtaining dc = 4hthr/λ, which is also shown in the figure. The power falloff with distance in the two-ray
model can be approximated by a piecewise linear model with three segments, which is also shown in
Figure 2.5 slightly offset from the actual power falloff curve for illustration purposes. In the first segment
power falloff is constant and proportional to 1/(d2 + h2

t ), for distances between ht and dc power falls off
at -20 dB/decade, and at distances greater than dc power falls off at -40 dB/decade.

The critical distance dc can be used for system design. For example, if propagation in a cellular
system obeys the two-ray model then the critical distance would be a natural size for the cell radius,
since the path loss associated with interference outside the cell would be much larger than path loss for
desired signals inside the cell. However, setting the cell radius to dc could result in very large cells, as
illustrated in Figure 2.5 and in the next example. Since smaller cells are more desirable, both to increase
capacity and reduce transmit power, cell radii are typically much smaller than dc. Thus, with a two-ray
propagation model, power falloff within these relatively small cells goes as distance squared. Moreover,
propagation in cellular systems rarely follows a two-ray model, since cancellation by reflected rays rarely
occurs in all directions.

Example 2.2: Determine the critical distance for the two-ray model in an urban microcell (ht = 10m,
hr = 3 m) and an indoor microcell (ht = 3m, hr = 2 m) for fc = 2 GHz.

Solution: dc = 4hthr/λ = 800 meters for the urban microcell and 160 meters for the indoor system. A
cell radius of 800 m in an urban microcell system is a bit large: urban microcells today are on the order of
100 m to maintain large capacity. However, if we used a cell size of 800 m under these system parameters,
signal power would fall off as d2 inside the cell, and interference from neighboring cells would fall off as
d4, and thus would be greatly reduced. Similarly, 160m is quite large for the cell radius of an indoor
system, as there would typically be many walls the signal would have to go through for an indoor cell
radius of that size. So an indoor system would typically have a smaller cell radius, on the order of 10-20
m.
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Figure 2.5: Received Power versus Distance for Two-Ray Model.

If we average out the local maxima and minima in (2.12), the resulting average power loss in dB
versus log-distance can be approximated by dividing the power loss curve of Fig. 2.5 into three straight-
line segments as follows. For d < ht the average power falloff with distance is constant. For ht < d < dc
the average power falloff with distance corresponds to free space where power falls off proportional to
distance squared. For d > dc, the power falloff with distance is approximated by the fourth-power law in
(2.17). This three-segment model is a special case of the piecewise linear model, described in more detail
in Section 2.6.5. The three straight-line segments that approximate the two-ray model, corresponding to
constant power, free-space power falloff, and the fourth-power law, are also illustrated in Fig. 2.5.

2.4.2 Dielectric Canyon (Ten-Ray Model)

We now examine a model for urban area transmissions developed by Amitay [7]. This model assumes
rectilinear streets3 with buildings along both sides of the street and transmitter and receiver antenna
heights that are well below the tops of the buildings. The building-lined streets act as a dielectric canyon
to the propagating signal. Theoretically, an infinite number of rays can be reflected off the building
fronts to arrive at the receiver; in addition, rays may also be back-reflected from buildings behind the
transmitter or receiver. However, since some of the signal energy is dissipated with each reflection, signal
paths corresponding to more than three reflections can generally be ignored. When the street layout is
relatively straight, back reflections are usually negligible also. Experimental data show that a model of
ten reflection rays closely approximates signal propagation through the dielectric canyon [7]. The ten
rays incorporate all paths with one, two, or three reflections: specifically, there is the LOS, the ground-
reflected (GR), the single-wall (SW ) reflected, the double-wall (DW ) reflected, the triple-wall (TW )
reflected, the wall-ground (WG) reflected and the ground-wall (GW ) reflected paths. There are two of
each type of wall-reflected path, one for each side of the street. An overhead view of the ten-ray model
is shown in Figure 2.6.

3A rectilinear city is flat, with linear streets that intersect at 90o angles, as in midtown Manhattan.
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Figure 2.6: Overhead View of the Ten-Ray Model.

For the ten-ray model, the received signal is given by

r10ray(t) = <
{
λ

4π

[√
Glu(t)ej(2πl)/λ

l
+

9∑
i=1

Ri
√
Gxiu(t− τi)ej(2πxi)/λ

xi

]
ej(2πfct+φ0),

}
(2.19)

where xi denotes the path length of the ith reflected ray, τi = (xi − l)/c, and
√
Gxi is the product of the

transmit and receive antenna gains corresponding to the ith ray. For each reflection path, the coefficient
Ri is either a single reflection coefficient given by (2.15) or, if the path corresponds to multiple reflections,
the product of the reflection coefficients corresponding to each reflection. The dielectric constants used
in (2.15) are approximately the same as the ground dielectric, so εr = 15 is used for all the calculations of
Ri. If we again assume a narrowband model such that u(t) ≈ u(t− τi) for all i, then the received power
corresponding to (2.19) is

Pr = Pt

[
λ

4π

]2 ∣∣∣∣∣
√
Gl
l

+
9∑
i=1

Ri
√
Gxie

j∆φi

xi

∣∣∣∣∣
2

, (2.20)

where ∆φi = 2π(xi − l)/λ.
Power falloff with distance in both the ten-ray model (2.20) and urban empirical data [13, 47, 48]

for transmit antennas both above and below the building skyline is typically proportional to d−2, even
at relatively large distances. Moreover, this falloff exponent is relatively insensitive to the transmitter
height. This falloff with distance squared is due to the dominance of the multipath rays which decay as
d−2, over the combination of the LOS and ground-reflected rays (the two-ray model), which decays as
d−4. Other empirical studies [15, 49, 50] have obtained power falloff with distance proportional to d−γ ,
where γ lies anywhere between two and six.

2.4.3 General Ray Tracing

General Ray Tracing (GRT) can be used to predict field strength and delay spread for any building con-
figuration and antenna placement [11, 34, 35]. For this model, the building database (height, location,
and dielectric properties) and the transmitter and receiver locations relative to the buildings must be
specified exactly. Since this information is site-specific, the GRT model is not used to obtain general
theories about system performance and layout; rather, it explains the basic mechanism of urban propa-
gation, and can be used to obtain delay and signal strength information for a particular transmitter and
receiver configuration.

The GRT method uses geometrical optics to trace the propagation of the LOS and reflected signal
components, as well as signal components from building diffraction and diffuse scattering. There is no
limit to the number of multipath components at a given receiver location: the strength of each component
is derived explicitly based on the building locations and dielectric properties. In general, the LOS and
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reflected paths provide the dominant components of the received signal, since diffraction and scattering
losses are high. However, in regions close to scattering or diffracting surfaces, which are typically blocked
from the LOS and reflecting rays, these other multipath components may dominate.

The propagation model for direct and reflected paths was outlined in the previous section. Diffraction
occurs when the transmitted signal “bends around” an object in its path to the receiver, as shown in
Figure 2.7. Diffraction results from many phenomena, including the curved surface of the earth, hilly
or irregular terrain, building edges, or obstructions blocking the LOS path between the transmitter and
receiver [14, 3, 1]. Diffraction can be accurately characterized using the geometrical theory of diffraction
(GTD) [38], however the complexity of this approach has precluded its use in wireless channel modeling.
Wedge diffraction simplifies the GTD by assuming the diffracting object is a wedge rather than a more
general shape. This model has been used to characterize the mechanism by which signals are diffracted
around street corners, which can result in path loss exceeding 100 dB for some incident angles on the
wedge [8, 35, 36, 37]. Although wedge diffraction simplifies the GTD, it still requires a numerical solution
for path loss [38, 39] and is thus is not commonly used. Diffraction is most commonly modeled by the
Fresnel knife edge diffraction model due to its simplicity. The geometry of this model is shown in
Figure 2.7, where the diffracting object is assumed to be asymptotically thin, which is not generally the
case for hills, rough terrain, or wedge diffractors. In particular, this model does not consider diffractor
parameters such as polarization, conductivity, and surfance roughness, which can lead to inaccuracies
[36]. The geometry of Figure 2.7 indicates that the diffracted signal travels distance d + d′ resuling in a
phase shift of φ = 2π(d+ d′)/λ. The geometry of Figure 2.7 indicates that for h small relative to d and
d′, the signal must travel an additional distance relative to the LOS path of approximately

∆d =
h2

2
d+ d′

dd′
,

and the corresponding phase shift relative to the LOS path is approximately

∆φ =
2π∆d
λ

=
π

2
v2 (2.21)

where

v = h

√
2(d+ d′)
λdd′

(2.22)

is called the Fresnel-Kirchoff diffraction parameter. The path loss associated with knife-edge diffrac-
tion is generally a function of v. However, computing this diffraction path loss is fairly complex, requiring
the use of Huygen’s principle, Fresnel zones, and the complex Fresnel integral [3]. Moreover, the resulting
diffraction loss cannot generally be found in closed form. Approximations for knife-edge diffraction path
loss (in dB) relative to LOS path loss are given by Lee [14, Chapter 2] as

L(v)(dB) =




20 log10[0.5 − 0.62v] −0.8 ≤ v < 0
20 log10[0.5e−.95v] 0 ≤ v < 1
20 log10[0.4 −√.1184 − (.38 − .1v)2] 1 ≤ v < 2.4
20 log10[.225/v] v > 2.4

. (2.23)

A similar approximation can be found in [40]. The knife-edge diffraction model yields the following
formula for the received diffracted signal:

r(t) = <
{
L(v)

√
Gdu(t− τ)e−j(2π(d+d′))/λej(2πfct+φ0),

}
, (2.24)
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Figure 2.7: Knife-Edge Diffraction.

where
√
Gd is the antenna gain and τ = ∆d/c is the delay associated with the defracted ray relative to

the LOS path.
In addition to the diffracted ray, there may also be multiple diffracted rays, or rays that are both

reflected and diffracted. Models exist for including all possible permutations of reflection and diffraction
[41]; however, the attenuation of the corresponding signal components is generally so large that these
components are negligible relative to the noise.

Transmitter

s

Receiver

s
l

Figure 2.8: Scattering.

A scattered ray, shown in Figure 2.8 by the segments s′ and s, has a path loss proportional to
the product of s and s′. This multiplicative dependence is due to the additional spreading loss the ray
experiences after scattering. The received signal due to a scattered ray is given by the bistatic radar
equation [42]:

r(t) = <
{
u(t− τ)

λ
√
Gsσe

−j(2π(s+s′)/λ)

(4π)3/2ss′
ej(2πfct+φ0)

}
(2.25)

where τ = (s+ s′− l)/c is the delay associated with the scattered ray, σ (in m2) is the radar cross section
of the scattering object, which depends on the roughness, size, and shape of the scatterer, and

√
Gs is

the antenna gain. The model assumes that the signal propagates from the transmitter to the scatterer
based on free space propagation, and is then reradiated by the scatterer with transmit power equal to σ
times the received power at the scatterer. From (2.25) the path loss associated with scattering is

Pr (dBm) = Pt (dBm) + 10 log10(Gs) + 10 log10(σ) − 30 log(4π) − 20 log s− 20 log(s′). (2.26)

Empirical values of 10 log10 σ were determined in [43] for different buildings in several cities. Results
from this study indicate that σ = 10 log10 σ in dBm2 ranges from −4.5dbm2 to 55.7dbm2, where dbm2

denotes the dB value of the σ measurement with respect to one square meter.
The received signal is determined from the superposition of all the components due to the multiple

rays. Thus, if we have a LOS ray, Nr reflected rays, Nd diffracted rays, and Ns diffusely scattered rays,
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the total received signal is

rtotal(t) = <
{[

λ

4π

] [√
Glu(t)ej(2πl)/λ

l
+

Nr∑
i=1

Rxi

√
Gxiu(t− τi)e−j(2πri/λ)

ri

+
Nd∑
j=1

Lj(v)
√
Gdj

u(t− τj)e
−j(2π(dj+d

′
j))/λej(2πfct+φ0),

+
Ns∑
k=1

σk
√
Gsk

u(t− τk)ej(2π(sk+s′k))/λ

sks
′
k

]
ej(2πfct+φ0)

}
, (2.27)

where τi,τj ,τk is, respectively, the time delay of the given reflected, diffracted, or scattered ray normalized
to the delay of the LOS ray, as defined above.

Any of these multipath components may have an additional attenuation factor if its propagation path
is blocked by buildings or other objects. In this case, the attenuation factor of the obstructing object
multiplies the component’s path loss term in (2.27). This attenuation loss will vary widely, depending on
the material and depth of the object [1, 44]. Models for random loss due to attenuation are described in
Section 2.7.

2.5 Simplified Path Loss Model

The complexity of signal propagation makes it difficult to obtain a single model that characterizes path
loss accurately across a range of different environments. Accurate path loss models can be obtained from
complex ray tracing models or empirical measurements when tight system specifications must be met or
the best locations for base stations or access point layouts must be determined. However, for general
tradeoff analysis of various system designs it is sometimes best to use a simple model that captures
the essence of signal propagation without resorting to complicated path loss models, which are only
approximations to the real channel anyway. Thus, the following simplified model for path loss as a
function of distance is commonly used for system design:

Pr = PtK

[
d0

d

]γ
. (2.28)

The dB attenuation is thus

Pr (dBm) = Pt (dBm) +K (dB) − 10γ log10

[
d

d0

]
. (2.29)

In this approximation, K is a unitless constant which depends on the antenna characteristics and the
average channel attenuation, d0 is a reference distance for the antenna far-field, and γ is the path loss
exponent. Due to scattering phenomena in the antenna near-field, the model (2.28) is generally only
valid at transmission distances d > d0, where d0 is typically assumed to be 1-10 m indoors and 10-100 m
outdoors. The value of K < 1 is sometimes set to the free space path loss at distance d0:

K (dB) = −20 log10(4πd0/λ), (2.30)

and this assumption is supported by empirical data for free-space path loss at a transmission distance of
100 m [32]. Alternatively, K can be determined by measurement at d0 or optimized (alone or together
with γ) to minimize the mean square error (MSE) between the model and empirical measurements [32].
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The value of γ depends on the propagation environment: for propagation that approximately follows a
free-space or two-ray model γ is set to 2 or 4, respectively. The value of γ for more complex environments
can be obtained via a minimum mean square error (MMSE) fit to empirical measurements, as illustrated
in the example below. Alternatively γ can be obtained from an empirically-based model that takes into
account frequency and antenna height [32]. A table summarizing γ values for different indoor and outdoor
environments and antenna heights at 900 MHz and 1.9 GHz taken from [28, 43, 32, 25, 24, 17, 20, 1] is
given below. Path loss exponents at higher frequencies tend to be higher [29, 24, 23, 25] while path loss
exponents at higher antenna heights tend to be lower [32]. Note that the wide range of empirical path loss
exponents for indoor propagation may be due to attenuation caused by floors, objects, and partitions.
These effects are discussed in more detail in Section 2.6.6.

Environment γ range
Urban macrocells 3.7-6.5
Urban microcells 2.7-3.5

Office Building (same floor) 1.6-3.5
Office Building (multiple floors) 2-6

Store 1.8-2.2
Factory 1.6-3.3
Home 3

Table 2.1: Typical Path Loss Exponents

Example 2.3: Consider the set of empirical measurements of Pr/Pt given in the table below for an in-
door system at 2 GHz. Find the path loss exponent γ that minimizes the MSE between the simplified
model (2.29) and the empirical dB power measurements, assuming that d0 = 1 m and K is determined
from the free space path loss formula at this d0. Find the received power at 150 m for the simplified path
loss model with this path loss exponent and a transmit power of 1 mW (0 dBm).

Distance from Transmitter M = Pr/Pt
10 m -70 dB
20 m -75 dB
50 m -90 dB
100 m -110 dB
300 m -125 dB

Table 2.2: Path Loss Measurements

Solution: We first set up the MMSE error equation for the dB power measurements as

F (γ) =
5∑
i=1

[Mmeasured(di) −Mmodel(di)]
2,

where Mmeasured(di) is the path loss measurement in Table 2.2 at distance di and Mmodel(di) =
K − 10γ log10(d) is the path loss based on (2.29) at di. Using the free space path loss formula, K =
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−20 log10(4π)/.3333 = −31.54 dB. Thus

F (γ) = (−70 + 31.54 + 10γ)2 + (−75 + 31.54 + 13.01γ)2 + (−90 + 31.54 + 16.99γ)2

+ (−110 + 31.54 + 20γ)2 + (−125 + 31.54 + 24.77γ)2

= 21676.3 − 11654.9γ + 1571.47γ2. (2.31)

Differentiating F (γ) relative to γ and setting it to zero yields

∂F (γ)
∂γ

= −11654.9 + 3142.94γ = 0 → γ = 3.71.

To find the received power at 150 m under the simplified path loss model with K = −31.54, γ = 3.71, and
Pt = 0 dBm, we have Pr(dBm) = Pt(dBm)+K(dB)−10γ log10(d/d0) = 0−31.54−10∗3.71 log10(150) =
−112.27 dBm. Clearly the measurements deviate from the simplified path loss model: this variation can
be attributed to shadow fading, described in Section 2.7

2.6 Empirical Path Loss Models

Most mobile communication systems operate in complex propagation environments that cannot be accu-
rately modeled by free-space path loss, ray tracing, or the simplified model. A number of path loss models
have been developed over the years to predict path loss in typical wireless environments such as large
urban macrocells, urban microcells, and, more recently, inside buildings. These models are mainly based
on empirical measurements over a given distance in a given frequency range and a particular geograph-
ical area or building. However, applications of these models are not always restricted to environments
in which the empirical measurements were made, which makes the accuracy of such empirically-based
models applied to more general environments somewhat questionable. Nevertheless, many wireless sys-
tems use these models as a basis for performance analysis. In our discussion below we will begin with
common models for urban macrocells, then describe more recent models for outdoor microcells and indoor
propagation.

2.6.1 Okumura’s Model

One of the most common models for signal prediction in large urban macrocells is Okumura’s model [52].
This model is applicable over distances of 1-100 Km and frequency ranges of 150-1500 MHz. Okumura
used extensive measurements of base station-to-mobile signal attenuation throughout Tokyo to develop
a set of curves giving median attenuation relative to free space of signal propagation in irregular terrain.
The base station heights for these measurements were 30-100 m, the upper end of which is higher than
typical base stations today. The path loss formula of Okumura is given by

L50 (dB) = Lf +Amu(f, d) −G(ht) −G(hr) −GAREA (2.32)

where d is the distance between transmitter and receiver, L50 is the median (50th percentile) value of
propagation path loss, Lf is free space path loss, Amu is the median attenuation in addition to free space
path loss across all environments, G(ht) is the base station antenna height gain factor, G(hr) is the mobile
antenna height gain factor, and GAREA is the gain due to the type of environment. The values of Amu
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and GAREA are obtained from Okumura’s empirical plots [52, 1]. Okumura derived empirical formulas
for G(ht) and G(hr) as

G(ht) = 20 log10(ht/200), 30m < ht < 1000m (2.33)

G(hr) =

{
10 log10(hr/3) hr ≤ 3m
20 log10(hr/3) 3m < hr < 10m

. (2.34)

Correction factors related to terrain are also developed in [52] that improve the model accuracy. Oku-
mura’s model has a 10-14 dB empirical standard deviation between the path loss predicted by the model
and the path loss associated with one of the measurements used to develop the model.

2.6.2 Hata Model

The Hata model [51] is an empirical formulation of the graphical path loss data provided by Okumura
and is valid over roughly the same range of frequencies, 150-1500 MHz. This empirical model simplifies
calculation of path loss since it is a closed-form formula and is not based on empirical curves for the
different parameters. The standard formula for median path loss in urban areas under the Hata model is

L50,urban(dB) = 69.55+26.16 log10(fc)−13.82 log10(hte)−a(hre)+(44.9−6.55 log10(hte)) log10(d). (2.35)

The parameters in this model are the same as under the Okumura model, and a(hre) is a correction factor
for the mobile antenna height based on the size of the coverage area. For small to medium sized cities,
this factor is given by [51, 1]

a(hr) = (1.1 log10(fc) − .7)hr − (1.56 log10(fc) − .8)dB,

and for larger cities at frequencies fc > 300 MHz by

a(hr) = 3.2(log10(11.75hr)2 − 4.97 dB.

Corrections to the urban model are made for suburban and rural propagation, so that these models are,
respectively,

L50,suburban(dB) = L50,urban(dB) − 2[log10(fc/28)]2 − 5.4 (2.36)

and
L50,rural(dB) = L50,urban(dB) − 4.78[log10(fc)]

2 + 18.33 log10(fc) −K, (2.37)

where K ranges from 35.94 (countryside) to 40.94 (desert). Hata’s model does not provide for any path
specific correction factors, as is available in the Okumura model. The Hata model well-approximates the
Okumura model for distances d > 1 Km. Thus, it is a good model for first generation cellular systems, but
does not model propagation well in current cellular systems with smaller cell sizes and higher frequencies.
Indoor environments are also not captured with the Hata model.

2.6.3 COST231 Extension to Hata Model

The Hata model was extended by the European cooperative for scientific and technical research (EURO-
COST) to 2 GHz as follows [53]:

L50,urban(dB) = 46.3+33.9 log10(fc)−13.82 log10(ht)−a(hr)+(44.9−6.55 log10(ht)) log10(d)+CM , (2.38)

where a(hr) is the same correction factor as before and CM is 0 dB for medium sized cities and suburbs,
and 3 dB for metropolitan areas. This model is referred to as the COST-231 extension to the Hata
model, and is restricted to the following range of parameters: 1.5GHz < fc < 2 GHz, 30m < ht < 200 m,
1m < hr < 10 m, 1Km < d < 20 Km.
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2.6.4 Walfisch/Bertoni Model

The COST extension to the Hata model does not consider the impact of diffraction from rooftops and
buildings. A model for these effects was developed by Walfisch and Bertoni [54]. This model uses
diffraction to predict average signal strength at street level. The model considers the path loss to be the
product of three factors:

L = P0Q
2P1, (2.39)

where P0 is the free space path loss for omnidirectional antennas, Q2 reflects the signal power reduction
due to buildings that block the receiver at street level, and P1 is based on the signal loss from the rooftop
to the street due to diffraction. The model has been adopted for the IMT-2000 standard.

Other commonly used empirical models for path loss in macrocells include the Longley-Rice model,
the Durkin model, and the Feuerstein model. Details of these models can be found in [1].

2.6.5 Piecewise Linear (Multi-Slope) Model

A common method for modeling path loss in outdoor microcells and indoor channels is a piecewise linear
model of dB loss versus log-distance. This approximation is illustrated in Figure 2.9 for dB attenuation
versus log-distance, where the dots represent hypothetical empirical measurements and the piecewise
linear model represents an approximation to these measurements. A piecewise linear model with N
segments must specify N − 1 breakpoints d1, . . . , dN−1 and the slopes corresponding to each segment
s1, . . . , sN . Different methods can be used to determine the number and location of breakpoints to be
used in the model. Once these are fixed, the slopes corresponding to each segment can be obtained by
linear regression. The piecewise linear model has been used to model path loss for outdoor channels in
[16] and for indoor channels in [45].
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Figure 2.9: Piecewise Linear Model for Path Loss.

A special case of the piecewise model is the dual-slope model. The dual slope model is characterized
by a constant path loss factor K and a path loss exponent γ1 above some reference distance d0 up to
some critical distance dc, after which point power falls off with path loss exponent γ2:

Pr(dB) =

{
Pt +K − 10γ1 log10(d/d0) d0 ≤ d ≤ dc
Pt +K − 10γ1 log10(dc/d0) − 10γ2 log10(d/dc) d > dc

. (2.40)

The path loss exponents, K, and dc are typically obtained via a regression fit to empirical data
[32, 30]. The two-ray model described in Section 2.4 for d > ht can be approximated with the dual-slope
model, with one breakpoint at the critical distance dc and attenuation slope s1 = 20 dB/decade and
s2 = 40 dB/decade.
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The multiple equations in the dual-slope model can be captured with the following dual-slope ap-
proximation [15, 46]:

Pr =
PtK

L(d)
, (2.41)

where

L(d)
4
=
[
d

d0

]γ1
q

√
1 +

(
d

dc

)(γ1−γ2)q
. (2.42)

In this expression, q is a parameter that determines the smoothness of the path loss at the transition
region close to the breakpoint distance dc. This model can be extended to more than two regions [16].

2.6.6 Indoor Propagation Models

Indoor environments differ widely in the materials used for walls and floors, the layout of rooms, hallways,
windows, and open areas, the location and material in obstructing objects, and the size of each room and
the number of floors. All of these factors have a significant impact on path loss in an indoor environment.
Thus, it is difficult to find generic models that can be accurately applied to determine path loss in a
specific indoor setting.

Indoor path loss models must accurately capture the effects of attenuation across floors due to
partitions, as well as between floors. Measurements across a wide range of building characteristics and
signal frequencies indicate that the attenuation per floor is greatest for the first floor that is passed through
and decreases with each subsequent floor passed through. Specifically, measurements in [17, 19, 24, 20]
indicate that at 900 MHz the attenuation when the transmitter and receiver are separated by a single floor
ranges from 10-20 dB, while subsequent floor attenuation is 6-10 dB per floor for the next three floors,
and then a few dB per floor for more than four floors. At higher frequencies the attenuation loss per floor
is typically larger [19, 18]. The attenuation per floor is thought to decrease as the number of attenuating
floors increases due to the scattering up the side of the building and reflections from adjacent buildings.
Partition materials and dielectric properties vary widely, and thus so do partition losses. Measurements
for the partition loss at different frequencies for different partition types can be found in [1, 21, 22, 17, 23],
and Table 2.3 indicates a few examples of partition losses measured at 900-1300 MHz from this data. The
partition loss obtained by different researchers for the same partition type at the same frequency often
varies widely, making it difficult to make generalizations about partition loss from a specific data set.

Partition Type Partition Loss in dB
Cloth Partition 1.4

Double Plasterboard Wall 3.4
Foil Insulation 3.9
Concrete wall 13

Aluminum Siding 20.4
All Metal 26

Table 2.3: Typical Partition Losses

The experimental data for floor and partition loss can be incorporated into the simple path loss

43

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


model (2.28) as

Pr = Pt +K − 10γ log10

[
d

d0

]
−

Nf∑
i=1

FAFi −
Np∑
i=1

PAFi, (2.43)

where γ is obtained from the path loss for a same floor measurement (e.g. from Table 2.1), FAFi represents
the floor attenuation factor (FAF) for the ith floor traversed by the signal, and PAFi represents the
partition attenuation factor (PAF) associated with the ith partition traversed by the signal. The number
of floors and partitions traversed by the signal are Nf and Np, respectively.

Another important factor for indoor systems where the transmitter is located outside the building
is the building penetration loss. Measurements indicate that building penetration loss is a function
of frequency, height, and the building materials. Building penetration loss on the ground floor typically
range from 8-20 dB for 900 MHz to 2 GHz [25, 26, 3]. The penetration loss decreases slightly as frequency
increases, and also decreases by about 1.4 dB per floor at floors above the ground floor. This increase
is typically due to reduced clutter at higher floors and the higher likelihood of a line-of-sight path.
The type and number of windows in a building also have a significant impact on penetration loss [27].
Measurements made behind windows have about 6 dB less penetration loss than measurements made
behind exterior walls. Moreover, plate glass has an attenuation of around 6 dB, whereas lead-lined glass
has an attenuation between 3 and 30 dB.

2.7 Shadow Fading

In addition to path loss, a signal will typically experience random variation due to blockage from objects
in the signal path, giving rise to a random variation about the path loss at a given distance. In addition,
changes in reflecting surfaces and scattering objects can also cause random variation about the path loss.
Thus, a model for the random attenuation due to these effects is also needed. Since the location, size, and
dielectric properties of the blocking objects as well as the changes in reflecting surfaces and scattering
objects that cause the random attenuation are generally unknown, statistical models are widely used
to characterize this attenuation. The most common model for this additional attenuation is log-normal
shadowing. This model has been confirmed empirically to accurately model the variation in path loss or
received power in both outdoor and indoor radio propagation environments (see e.g. [32, 59].)

In the log-normal shadowing model the path loss ψ is assumed random with a log-normal distribution
given by

p(ψ) =
ξ√

2πσψdB
ψ

exp

[
−(10 log10 ψ − µψdB

)2

2σ2
ψdB

]
, ψ > 0, (2.44)

where ξ = 10/ ln 10, µψdB
is the mean of ψdB = 10 log10 ψ in dB and σψdB

is the standard deviation of
ψdB, also in dB. Note that if the path loss is log-normal, then the received power and receiver SNR will
also be log-normal since these are just constant multiples of ψ. The mean of ψ (the linear average path
loss) can be obtained from (2.44) as

µψ = E[ψ] = exp

[
µψdB

ξ
+
σ2
ψdB

2ξ2

]
. (2.45)

The conversion from the linear mean (in dB) to the log mean (in dB) is derived from (2.45) as

10 log10 µψ = µψdB
+
σ2
ψdB

2ξ
. (2.46)
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Performance in log-normal shadowing is typically parameterized by the log mean µψdB
, which is refered

to as the average dB path loss and is in units of dB. The linear mean path loss in dB, 10 log10 µψ, is
refered to as the average path loss.

With a change of variables we see that the distribution of the dB value of ψ is Gaussian with mean
µψdB

and standard deviation σψdB
:

p(ψdB) =
1√

2πσψdB

exp

[
−(ψdB − µψdB

)2

2σ2
ψdB

]
. (2.47)

The log-normal distribution is defined by two paramenters: µψdB
and σψdB

. Since blocking objects cause
signal attenuation, µψdB

is always nonnegative. However, in some cases the average attenuation due to
both path loss and shadowing is incorporated into the path loss model. For example, piecewise linear
path loss models based on empirical data will incorporate the average shadowing associated with the
measurements into the path loss model. In this case the shadowing model superimposed on the simplified
path loss model should have µψdB

= 0. However, if the path loss model does not incorporate average
attenuation due to shadowing or if the shadowing model incorporates path loss via its mean, then µψdB

as well as σψdB
will be positive, and must be obtained from an analytical model, simulation, or empirical

measurements.
If the mean and standard deviation for the shadowing model are based on empirical measurements

then the question arises as to whether they should be obtained by taking averages of the linear or
dB values of the empirical measurements. Specifically, given empirical (linear) path loss measurements
{pi}Ni=1, should the mean path loss be determined as µψ = 1

N

∑N
i=1 pi or as µψdB

= 1
N

∑N
i=1 10 log10 pi. A

similar question arises for computing the empirical variance. In practice it is more common to determine
mean path loss and variance based on averaging the dB values of the empirical measurements for several
reasons. First, as we will see below, the mathematical justification for the log-normal model is based
on dB measurements. In addition, the literature shows that obtaining empirical averages based on dB
path loss measurements leads to a smaller estimation error [61]. Finally, as we saw in Section 2.6.5,
power falloff with distance models are often obtained by a piece-wise linear approximation to empirical
measurements of dB power versus the log of distance [1].

Most empirical studies for outdoor channels support a standard deviation σψdB
ranging from five to

twelve dB in macrocells and four to thirteen dB in microcells [2, 15, 33, 55, 5]. The mean power µψdB

depends on the path loss and building properties in the area under consideration. The mean power µψdB

varies with distance due to path loss and the fact that average attenuation from objects increases with
distance due to the potential for a larger number of attenuating objects.

The Gaussian model for the distribution of the mean received signal in dB can be justified by the
following attenuation model when shadowing is dominated by the attenuation from blocking objects. The
attenuation of a signal as it travels through an object of depth d is approximately equal to

s(d) = ce−αd, (2.48)

where c is an adjustment constant and α is an attenuation constant that depends on the object’s materials
and dielectric properties. If we assume that α is approximately equal for all blocking objects, and that
the ith blocking object has depth di, then the attenuation of a signal as it propagates through this region
is

s(dt) = ce−α
∑

i
di = ce−αdt , (2.49)

where dt =
∑
i di is the sum of the object depths through which the signal travels. If there are many

objects between the transmitter and receiver, then we can approximate dt by a Gaussian random variable.
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Thus, log s(dt) = log c − αdt will have a Gaussian distribution with mean µ and standard deviation σ.
The value of σ will depend on the environment and, as mentioned earlier, empirical measurements for σ
range between four and twelve dB.

Example 2.4:
In Example 1.3 we found that the exponent for the simplified path loss model that best fit the mea-

surements in Table 2.2 was γ = 3.71. Assuming the simplified path loss model with this exponent and
the same K = −31.54 dB, find σ2

ψdB
, the variance of log-normal shadowing about the mean path loss

based on these empirical measurements.

Solution The sample variance relative to the simplified path loss model with γ = 3.71 is

σ2
ψdB

=
1
5

5∑
i=1

[Mmeasured(di) −Mmodel(di)]
2,

where Mmeasured(di) is the path loss measurement in Table 2.2 at distance di and Mmodel(di) =
K − 35.6 log10(d). Thus

σ2
ψdB

=
1
5

[
(−70 − 31.54 + 37.1)2 + (−75 − 31.54 + 48.27)2 + (−90 − 31.54 + 63.03)2 + (−110 − 31.54 + 74.2)2

+ (−125 − 31.54 + 91.90)2
]

= 13.29.

Thus, the standard deviation of shadow fading on this path is σψdB
= 3.65 dB. Note that the bracketed

term in the above expression equals the MMSE formula (2.31) from Example 1.3 with γ = 3.71.

Extensive measurements have been taken to characterize the empirical autocorrelation of shadowing
for different environments at different frequencies, e.g. [55, 56, 60, 57, 58]. The most common analytical
model for autocorrelation, first proposed by Gudmundson [55] based on empirical measurements, assumes
the shadowing ψ(d) is a first-order autoregressive process where the autocorrelation between shadow
fading at two points separated by distance δ is given by

A(δ) = E[(ψdB(d) − µψdB
)(ψdB(d+ δ) − µψdB

)] = σ2
ψdB

ρ
δ/D
D , (2.50)

where ρD is the correlation between two points separated by a fixed distance D. This correlation must be
obtained empirically, and varies with the propagation environment and carrier frequency. Measurements
indicate that for suburban macrocells with fc = 900 MHz, ρD = .82 for D = 100 m and for urban
microcells with fc ≈ 2 GHz, ρD = .3 for D = 10 m [55, 57]. This model can be simplified and its
empirical dependence removed by setting ρD = 1/e for distance D = Xc, which yields

A(δ) = σ2
ψdB

e−δ/Xc . (2.51)

The decorrelation distance Xc in this model is the distance at which the signal autocorrelation equals
1/e of its maximum value and is on the order of the size of the blocking objects or clusters of these objects.
For outdoor systems Xc typically ranges from 50 to 100 m [57, 60]. For users moving at velocity v, the
shadowing decorrelation in time τ is obtained by substituting vτ = δ in (2.50) or (2.51). Autocorrelation
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relative to angular spread, which is useful for the multiple antenna systems treated in Chapter 10, has
been investigated in [57, 56].

The first-order autoregressive correlation model (2.50) and its simplified form (2.51) are easy to
analyze and to simulate. Specifically, one can simulate ψdB by first generating a white noise process and
then passing it through a first order filter with a pole at ρ−δ/DD for autocorrelation (2.50) or at e−δ/Xc

for autocorrelation (2.51). The filter output will produce a shadowing random process with the desired
autocorrelation properties [55, 5].

2.8 Combined Path Loss and Shadowing

Models for path loss and shadowing are typically superimposed to capture power falloff versus distance
along with the random attenuation about this path loss from shadowing. In this combined model, average
path loss (µψdB

) is captured by the path loss model and shadow fading creates variations about this
mean, as illustrated by the path loss and shadowing curve in Figure 2.1. Specifically, this curve plots
the combination of the simplified path loss model (2.28) and the log-normal shadowing random process
defined by (2.47) and (2.51). For this combined model the ratio of received to transmitted power in dB
is given by:

Pr
Pt

(dB) = 10 log10K − 10γ log10

d

d0
+ ψdB, (2.52)

where ψdB is a Gauss-distributed random variable with mean zero and variance σ2
ψdB

. In (2.52) and as
shown in Figure 2.1, the path loss decreases linearly relative to log10 d with a slope of 10γ dB/decade,
where γ is the path loss exponent. The variations due to shadowing change more rapidly, on the order
of the decorrelation distance Xc.

The prior examples 2.3 and 2.4 illustrate the combined model for path loss and log-normal shadowing
based on the measurements in Table 2.2, where path loss obeys the simplified path loss model with
K = −31.54 dB and path loss exponent γ = 3.71 and shadowing obeys the log normal model with mean
given by the path loss model and standard deviation σψdB

= 3.65 dB.

2.9 Outage Probability under Path Loss and Shadowing

The combined effects of path loss and shadowing have important implications for wireless system design.
In wireless systems there is typically a target minimum received power level Pmin below which performance
becomes unacceptable (e.g. the voice quality in a cellular system is too poor to understand). However,
with shadowing the received power at any given distance from the transmitter is log-normally distributed
with some probability of falling below Pmin. We define outage probability pout(Pmin, d) under path
loss and shadowing to be the probability that the received power at a given distance d, Pr(d), falls below
Pmin: pout(Pmin, d) = p(Pr(d) < Pmin). For the combined path loss and shadowing model of Section 2.8
this becomes

p(Pr(d) ≤ Pmin) = 1 −Q

(
Pmin − (Pt + 10 log10K − 10γ log10(d/d0))

σψdB

)
, (2.53)

where the Q function is defined as the probability that a Gaussian random variable x with mean zero
and variance one is bigger than z:

Q(x)
4
= p(x > z) =

∫ ∞

z

1√
2π
e−y

2/2dy. (2.54)
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The conversion between the Q function and complementary error function is

Q(z) =
1
2
erfc

(
z√
2

)
. (2.55)

We will omit the parameters of pout when the context is clear or in generic references to outage probability.

Example 2.5:
Find the outage probability at 150 m for a channel based on the combined path loss and shadowing

models of Examples 2.3 and 2.4, assuming a transmit power of Pt = 100 mW and minimum power re-
quirement Pmin = −110.5 dBm.

Solution We have Pt = 10 mW = 10 dBm.

Pout(−110.5dBm, 150m) = p(Pr(150m) < −110.5dBm)

= 1 −Q

(
Pmin − (Pt + 10 log10K − 10γ log10(d/d0))

σψdB

)
.

= 1 −Q

(−110 − (10 − 31.54 − 37.1 log10[150])
3.65

)
= .049.

An outage probabilities of 5% is a typical target in wireless system designs.

2.10 Cell Coverage Area

The cell coverage area in a cellular system is defined as the percentage of area within a cell that has
received power above a given minimum. Consider a base station inside a circular cell of a given radius R.
All mobiles within the cell require some minimum received SNR for acceptable performance. Assuming
some reasonable noise and interference model, the SNR requirement translates to a minimum received
power Pmin throughout the cell. The transmit power at the base station is designed for an average
received power at the cell boundary of PR, where the average is computed based on path loss alone.
However, random shadowing will cause some locations within the cell to have received power below PR,
and others will have received power exceeding PR. This is illustrated in Figure 2.10, where we show
contours of constant received power based on a fixed transmit power at the base station for path loss
alone and for combined path loss and shadowing. For path loss alone constant power contours form a
circle around the base station, since path loss is the same at a uniform distance from the base station. For
combined path loss and shadowing the contours form an amoeba-like shape due to the random variations
about the circular path loss contour caused by shadowing. The constant power contours for combined
path loss and shadowing indicate the challenge shadowing poses in cellular system design. Specifically, it
is not possible for all users at the cell boundary to receive the same power level. Thus, the base station
must either transmit extra power to insure users affected by shadowing receive their minimum required
power Pmin, which causes excessive interference to neighboring cells, or some users within the cell will
not meet their minimum received power requirement. In fact, since the Gaussian distribution has infinite
tails, there is a nonzero probability that any mobile within the cell will have a received power that falls
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Figure 2.10: Contours of Constant Received Power.

below the minimum target, even if the mobile is close to the base station. This makes sense intuitively
since a mobile may be in a tunnel or blocked by a large building, regardless of its proximity to the base
station.

We now compute cell coverage area under path loss and shadowing. The percentage of area within
a cell where the received power exceeds the minimum required power Pmin is obtained by taking an
incremental area dA at radius r from the base station (BS) in the cell, as shown in Figure 2.10. Let Pr(r)
be the received power in dA from combined path loss and shadowing, and let PA = p(Pr(r) > Pmin) in
dA. Then the cell coverage area is given by

C =
1

πR2

∫
cell area

PAdA =
1

πR2

∫ 2π

0

∫ R

0
PArdrdθ. (2.56)

The outage probability of the cell is defined as the percentage of area within the cell that does not
meet its minimum power requirement Pmin, i.e. pcellout = 1 − C.

49

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


Given the log-normal distribution for the shadowing,

p(PR(r) ≥ Pmin) = Q

(
Pmin − (Pt + 10 log10K − 10γ log10(r/d0))

σψdB

)
= 1 − pout(Pmin, r). (2.57)

where pout is the outage probability defined in (2.53) with d = r. Locations within the cell with received
power below Pmin are said to be outage locations.

Combining (2.56) and (2.57) we get4

C =
2
R2

∫ R

0
rQ

(
a+ b ln

r

R

)
dr, (2.58)

where

a =
Pmin − P r(R)

σψdB

b =
10γ log10(e)

σψdB

, (2.59)

and PR = Pt + 10 log10K − 10γ log10(R/d0) is the received power at the cell boundary (distance R from
the base station) due to path loss alone. This integral yields a closed-form solution for C in terms of a
and b:

C = Q(a) + exp
(

2 − 2ab
b2

)
Q

(
2 − ab

b

)
. (2.60)

If the target minimum received power equals the average power at the cell boundary: Pmin = P r(R),
then a = 0 and the coverage area simplifies to

C =
1
2

+ exp
(

2
b2

)
Q

(
2
b

)
. (2.61)

Note that with this simplification C depends only on the ratio γ/σψdB
. Moreover, due to the sym-

metry of the Gaussian distribution, under this assumption the outage probability at the cell boundary
pout(P r(R), R) = 0.5.

Example 2.6:
Find the coverage area for a cell with the combined path loss and shadowing models of Examples 1.3

and 1.4, a cell radius of 200 m, a base station transmit power of Pt = 100 mW, and a minimum received
power requirement of Pmin = −110 dBm and of Pmin = −120 dBm.

Solution We first consider Pmin = −110 and check if a = 0 to determine whether to use the full formula
(2.60) or the simplified formula (2.61). We have P r(R) = Pt + K − 10γ log10(150) = 2 − 31.54 −
37.1 log10[120] = −114.9dBm 6= −110 dBm, so we use (2.60). Evaluating a and b from (2.59) yields
a = (−110 + 114.9)/3.65 = 1.34 and b = 37.1 ∗ .434/3.65 = 4.41. Substituting these into (2.60) yields

C = Q(1.34) + exp
(

2 − 2(1.34 ∗ 4.41)
4.412

)
= .58,

which would be a very low coverage value for an operational cellular system (lots of unhappy customers).
Now considering the less stringent received power requirement Pmin = −120 dBm yields a = (−120 +

4Recall that (2.57) is generally only valid for r ≥ d0, yet to simplify the analysis we have applied the model for all r.
This approximation will have little impact on coverage area, since d0 is typically very small compared to R and the outage
probability for r < d0 is negligible.
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114.9)/3.65 = −1.397 and the same b = 4.41. Substituting these values into (2.60) yields C = .986, a
much more acceptable value for coverage area.

Example 2.7: Consider a cellular system designed so that Pmin = P r(R), i.e. the received power due to
path loss at the cell boundary equals the minimum received power required for acceptable performance.
Find the coverage area for path loss values γ = 2, 4, 6 and σψdB

= 4, 8, 12 and explain how coverage
changes as γ and σψdB

increase.

Solution: For Pmin = P r(R) we have a = 0 so coverage is given by the formula (2.61). The coverage
area thus depends only on the value for b = 10γ log10[e]/σψdB

, which in turn depends only on the ratio
γ/σψdB

. The following table contains coverage area evaluated from (2.61) for the different γ and σψdB

values.

γ \ σψdB
4 8 12

2 .77 .67 .63
4 .85 .77 .71
6 .90 .83 .77

Table 2.4: Coverage Area for Different γ and σψdB

Not surprisingly, for fixed γ the coverage area increases as σψdB
decreases: that is because a smaller σψdB

means less variation about the mean path loss, and since with no shadowing we have 100% coverage
(since Pmin = P r(R)), we expect that as σψdB

decreases to zero, coverage area increases to 100%. It is
a bit more puzzling that for a fixed σψdB

coverage area increases as γ increases, since a larger γ implies
that received signal power falls off more quickly. But recall that we have set Pmin = P r(R), so the faster
power falloff is already taken into account (i.e. we need to transmit at much higher power with γ = 6
than with γ = 2 for this equality to hold). The reason coverage area increases with path loss expo-
nent under this assumption is that, as γ increases, the transmit power must increase to satisfy Pmin =
P r(R). This results in higher average power throughout the cell, resulting in a higher coverage area.
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Chapter 2 Problems

1. Under a free space path loss model, find the transmit power required to obtain a received power of
1 dBm for a wireless system with isotropic antennas (Gl = 1) and a carrier frequency f = 5 GHz,
assuming a distance d = 10m. Repeat for d = 100m.

2. For a two-path propagation model with transmitter-receiver separation d = 100 m, ht = 10 m, and
hr = 2 m, find the delay spread between the two signals.

3. For the two ray model, show how a Taylor series approximation applied to (2.13) results in the
approximation

∆φ =
2π(r′ + r − l)

λ
≈ 4πhthr

λd
.

4. For the two-ray path loss model, derive an approximate expression for the distance values below
the critical distance dc at which signal nulls occur.

5. Find the critical distance dc = under the two-path model for a large macrocell in a suburban area
with the base station mounted on a tower or building (ht = 20m), the receivers at height hr = 3m,
and fc = 2GHz. Is this a good size for cell radius in a suburban macrocell? Why or why not?

6. Suppose that instead of a ground reflection, a two-path model consists of a LOS component and
a signal reflected off a building to the left (or right) of the LOS path. Where must the building
be located relative to the transmitter and receiver for this model to be the same as the two-path
model with a LOS component and ground reflection?

7. Consider a two-path channel with impulse response h(t) = α1δ(τ) + α2δ(τ − .022µsec). Find the
distance separating the transmitter and receiver, as well as α1 and α2, assuming free space path
loss on each path with a reflection coefficient of -1. Assume the transmitter and receiver are located
8 meters above the ground and the carrier frequency is 900 MHz.

8. Directional antennas are a powerful tool to reduce the effects of multipath as well as interference. In
particular, directional antennas along the LOS path for the two-ray model can reduce the attenua-
tion effect of the ground wave cancellation, as will be illustrated in this problem. Plot the dB power
(10 log10 Pr) versus log distance (log10 d) for the two-ray model with the parameters f = 900MHz,
R=-1, ht = 50m, hr = 2m, Gl = 1, and the following values for Gr: Gr = 1, .316, .1, and .01 (i.e.
Gr = 0,−5,−10, and −20 dB, respectively). Each of the 4 plots should range in distance from
d = 1m to d = 100, 000m. Also calculate and mark the critical distance dc = 4hthr/λ on each plot,
and normalize the plots to start at approximately 0dB. Finally, show the piecewise linear model
with flat power falloff up to distance ht, falloff 10 log10(d−2) for ht < d < dc, and falloff 10 log10(d−4)
for d ≥ dc. (on the power loss versus log distance plot the piecewise linear curve becomes a set of
three straight lines with slope 0, 2, and 4, respectively). Note that at large distances it becomes
increasingly difficult to have Gr << Gl since it requires extremely precise angular directivity in the
antennas.

9. What average power falloff with distance would you expect for the 10-ray model and why?

10. For the 10-ray model, assume the transmitter and receiver are in the middle of a street of width 20
m and are at the same height. The transmitter-receiver separation is 500 m. Find the delay spread
for this model.
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Figure 2.11: System with Scattering

11. Consider a system with a transmitter, receiver, and scatterer as shown in Figure 2.11. Assume the
transmitter and receiver are both at heights ht = hr = 4m and are separated by distance d, with
the scatterer at distance .5d along both dimensions in a two-dimensional grid of the ground, i.e. on
such a grid the transmitter is located at (0, 0), the receiver is located at (0, d) and the scatterer is
located at (.5d, .5d). Assume a radar cross section of 20 dBm2. Find the path loss of the scattered
signal for d = 1, 10, 100, and 1000 meters. Compare with the path loss at these distances if the
signal is just reflected with reflection coefficient R = −1.

12. Under what conditions is the simplified path loss model (2.28) the same as the free space path loss
model (2.7).

13. Consider a receiver with noise power -160 dBm within the signal bandwidth of interest. Assume a
simplified path loss model with d0 = 1 m, K obtained from the free space path loss formula, and
γ = 4. For a transmit power of Pt = 10 mW, find the maximum distance between the transmitter
and receiver such that the received signal-to-noise power ratio is 20 dB.

14. This problem shows how different propagation models can lead to very different SNRs (and therefore
different link performance) for a given system design. Consider a linear cellular system using
frequency division, as might operate along a highway or rural road, as shown in the figure below.
Each cell is allocated a certain band of frequencies, and these frequencies are reused in cells spaced
a distance d away. Assume the system has square cells which are two kilometers per side, and
that all mobiles transmit at the same power P . For the following propagation models, determine
the minimum distance that the cells operating in the same frequency band must be spaced so that
uplink SNR (the ratio of the minimum received signal-to-interference power (S/I) from mobiles to
the base station) is greater than 20 dB. You can ignore all interferers except from the two nearest
cells operating at the same frequency.

(a) Propagation for both signal and interference follow a free-space model.

(b) Propagation for both signal and interference follow the simplified path loss model (2.28) with
d0 = 100m, K = 1, and γ = 3.

(c) Propagation for the signal follows the simplified path loss model with d0 = 100m, K = 1, and
γ = 2, while propagation of the interfererence follows the same model but with γ = 4.

15. Find the median path loss under the Hata model assuming fc = 900 MHz, ht = 20m, hr = 5
m and d = 100m for a large urban city, a small urban city, a suburb, and a rural area. Explain
qualitatively the path loss differences for these 4 environments.
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16. (Computer plots) Find parameters for a piecewise linear model with three segments to approximate
the two-path model path loss (2.4) over distances between 10 and 1000 meters, assuming ht = 10m
and hr = 2 m. Plot the path loss and the piecewise linear approximation using these parameters
over this distance range.

17. Using the indoor attentuation model, determine the required transmit power for a desired received
power of -110 dBm for a signal transmitted over 100 m that goes through 3 floors with attenuation
15 dB, 10 dB, and 6 dB, respectively, as well as 2 double plasterboard walls. Assume a reference
distance d0 = 1 and constant K = 0 dB.

18. The following table lists a set of empirical path loss measurements.

Distance from Transmitter Pr/Pt
5 m -60 dB
25 m -80 dB
65 m -105 dB
110 m -115 dB
400 m -135 dB
1000 m -150 dB

(a) Find the parameters of a simplified path loss model plus log normal shadowing that best fit
this data.

(b) Find the path loss at 2 Km based on this model.

(c) Find the outage probability at a distance d assuming the received power at d due to path loss
alone is 10 dB above the required power for nonoutage.

19. Consider a cellular system where propagation follows free space path loss plus log normal shadowing
with σ = 6 dB. Suppose that for acceptable voice quality a signal-to-noise power ratio of 15 dB is
required at the mobile. Assume the base station transmits at 1 W and its antenna has a 3 dB gain.
There is no antenna gain at the mobile and the receiver noise in the bandwidth of interest is -10
dBm. Find the maximum cell size so that a mobile on the cell boundary will have acceptable voice
quality 90% of the time.

20. In this problem we will simulate the log normal fading process over distance based on the autocor-
relation model (2.51). As described in the text, the simulation first generates a white noise process
and then passes it through a first order filter with a pole at e−δ/Xc . Assume Xc = 20 m and plot
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the resulting log normal fading process over a distance d ranging from 0 to 200 m, sampling the
process every meter. You should normalize your plot about 0 dB, since the mean of the log normal
shadowing is captured by path loss.

21. In this problem we will explore the impact of different log-normal shadowing parameters on outage
probability. Consider a a cellular system where the received signal power is distributed according
to a log-normal distribution with mean µ dB and standard deviation σψ dB. Assume the received
signal power must be above 10 dBm for acceptable performance.

(a) What is the outage probability when the log-normal distribution has µψ = 15dB and σψ =
8dB?

(b) For σψ = 4dB, what value of µψ is required such that the outage probability is less than 1%,
a typical value for high-quality PCS systems?

(c) Repeat (b) for σψ = 12dB.

(d) One proposed technique to reduce outage probability is to use macrodiversity, where a mobile
unit’s signal is received by multiple base stations and then combined. This can only be done
if multiple base stations are able to receive a given mobile’s signal, which is typically the case
for CDMA systems. Explain why this might reduce outage probability.

22. Find the coverage area for a microcellular system where path loss follows the simplied model with
γ = 3, d0 = 1, and K = 0 dB and there is also log normal shadowing with σ = 4 dB. Assume a
cell radius of 100 m, a transmit power of 80 mW, and a minimum received power requirement of
Pmin = −100 dBm.

23. Consider a cellular system where path loss follows the simplied model with γ = 6, and there is also
log normal shadowing with σ = 8 dB. If the received power at the cell boundary due to path loss is
20 dB higher than the minimum required received power for nonoutage, find the cell coverage area.

24. In microcells path loss exponents usually range from 2 to 6, and shadowing standard deviation
typically ranges from 4 to 12. Assuming a cellular system where the received power due to path
loss at the cell boundary equals the desired level for nonoutage, find the path loss and shadowing
parameters within these ranges that yield the best coverage area and the worst coverage. What is
the coverage area when these parameters are in the middle of their typical ranges.
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Chapter 3

Statistical Multipath Channel Models

In this chapter we examine fading models for the constructive and destructive addition of different
multipath components introduced by the channel. While these multipath effects are captured in the
ray-tracing models from Chapter 2 for deterministic channels, in practice deterministic channel models
are rarely available, and thus we must characterize multipath channels statistically. In this chapter we
model the multipath channel by a random time-varying impulse response. We will develop a statistical
characterization of this channel model and describe its important properties.

If a single pulse is transmitted over a multipath channel the received signal will appear as a pulse
train, with each pulse in the train corresponding to the LOS component or a distinct multipath component
associated with a distinct scatterer or cluster of scatterers. An important characteristic of a multipath
channel is the time delay spread it causes to the received signal. This delay spread equals the time
delay between the arrival of the first received signal component (LOS or multipath) and the last received
signal component associated with a single transmitted pulse. If the delay spread is small compared to
the inverse of the signal bandwidth, then there is little time spreading in the received signal. However,
when the delay spread is relatively large, there is significant time spreading of the received signal which
can lead to substantial signal distortion.

Another characteristic of the multipath channel is its time-varying nature. This time variation arises
because either the transmitter or the receiver is moving, and therefore the location of reflectors in the
transmission path, which give rise to multipath, will change over time. Thus, if we repeatedly transmit
pulses from a moving transmitter, we will observe changes in the amplitudes, delays, and the number of
multipath components corresponding to each pulse. However, these changes occur over a much larger time
scale than the fading due to constructive and destructive addition of multipath components associated
with a fixed set of scatterers. We will first use a generic time-varying channel impulse resonse to capture
both fast and slow channel variations. We will then restrict this model to narrowband fading, where the
channel bandwidth is small compared to the inverse delay spread. For this narrowband model we will
assume a quasi-static environment with a fixed number of multipath components each with fixed path loss
and shadowing. For this quasi-static environment we then characterize the variations over short distances
(small-scale variations) due to the constructive and destructive addition of multipath components.

3.1 Time-Varying Channel Impulse Response

Let the transmitted signal be as in Chapter 2:

s(t) = <
{
u(t)ej(2πfct+φ0)

}
= <{u(t)} cos(2πfct+ φ0) −={u(t)} sin(2πfct+ φ0), (3.1)
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where u(t) is the complex envelope of s(t) with bandwidth Bu, fc is its carrier frequency, and φ0 is the
oscillator phase offset. The corresponding received signal is the sum of the line-of-sight (LOS) path and
all resolvable multipath components:

r(t) = <


N(t)∑
n=0

αn(t)u(t− τn(t))ej2π[fc(t−τn(t))+φDn+φ0]


 , (3.2)

where n = 0 corresponds to the LOS path. The unknowns in this expression are the number of resolvable
multipath components N(t), discussed in more detail below, and for the LOS path and each multipath
component, its path length rn(t) and corresponding delay τn(t) = rn(t)/c, Doppler phase shift φDn(t)
and amplitude αn(t).

The nth resolvable multipath component may correspond to the multipath associated with a single
reflector or with multiple reflectors clustered together that generate multipath components with similar
delays, as shown in Figure 3.1. If each multipath component corresponds to just a single reflector then its
corresponding amplitude αn(t) is based on the path loss and shadowing associated with that multipath
component, its phase change associated with delay τn(t) is e−j2πfcτn(t) = e−j2πrn(t)/λ, and its Doppler
shift fDn(t) = v cos θn(t)λ for θn(t) its angle of arrival. This Doppler frequency shift leads to a Doppler
phase shift of φDn =

∫
t 2πfDn(t)dt. Suppose, however, that the nth multipath component results from

a reflector cluster1. We say that two multipath components with delay τ1 and τ2 are resolvable if
their delay difference significantly exceeds the inverse signal bandwidth: |τ1 − τ2| >> B−1

u . Multipath
components that do not satisfy this resolvability criteria cannot be separated out at the receiver, since
u(t− τ1) ≈ u(t− τ2), and thus these components are nonresolvable. These nonresolvable components
are combined into a single multipath component with delay τ ≈ τ1 ≈ τ2 and an amplitude and phase
corresponding to the sum of the different components. The amplitude of this summed signal will typically
undergo fast variations due to the constructive and destructive combining of the nonresolvable multipath
components. In general wideband channels have resolvable multipath components so that each term
in (3.2) corresponds to a single reflection, whereas narrowband channels tend to have nonresolvable
multipath components contributing to each term in (3.2).

  Single
Reflector

Reflector
  Cluster

Figure 3.1: A Single Reflector and A Reflector Cluster.

Since the parameters αn(t), τn(t), and φDn(t)) associated with each resolvable multipath component
1Equivalently, a single “rough” reflector can create different multipath components with slightly different delays.
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change over time, they are characterized as random processes which we assume to be both stationary
and ergodic. Thus, the received signal is also a stationary and ergodic random process. For wideband
channels, where each term in (3.2) corresponds to a single reflector, these parameters change slowly as
the propagation environment changes. For narrowband channels, where each term in (3.2) results from
the sum of nonresolvable multipath components, the parameters can change quickly, on the order of a
signal wavelength, due to constructive and destructive addition of the different components.

We can simplify r(t) by letting

φn(t) = 2πfcτn(t) − φDn − φ0. (3.3)

We can then rewrite the received signal as

r(t) = <



N(t)∑
n=0

αn(t)e−jφn(t)u(t− τn(t))


 ej2πfct


 . (3.4)

Since αn(t) is a function of path loss and shadowing while φn(t) depends on delay, Doppler, and carrier
offset, we typically assume that these two random processes are independent.

The received signal r(t) is obtained by convolving the baseband input signal u(t) with the equivalent
lowpass time-varying channel impulse response c(τ, t) of the channel and then upconverting to the carrier
frequency2:

r(t) = <
{(∫ ∞

−∞
c(τ, t)u(t− τ)dτ

)
ej2πfct

}
. (3.5)

Note that c(τ, t) has two time parameters: the time t when the impulse response is observed at the receiver,
and the time t− τ when the impulse is launched into the channel relative to the observation time t. If at
time t there is no physical reflector in the channel with multipath delay τn(t) = τ then c(τ, t) = 0. While
the definition of the time-varying channel impulse response might seem counterintuitive at first, c(τ, t)
must be defined in this way to be consistent with the special case of time-invariant channels. Specifically,
for time-invariant channels we have c(τ, t) = c(τ, t + T ), i.e. the response at time t to an impulse at
time t − τ equals the response at time t + T to an impulse at time t + T − τ . Setting T = −t, we get
that c(τ, t) = c(τ, t− t) = c(τ), where c(τ) is the standard time-invariant channel impulse response: the
response at time τ to an impulse at zero or, equivalently, the response at time zero to an impulse at time
−τ .

We see from (3.4) and (3.5) that c(τ, t) must be given by

c(τ, t) =
N(t)∑
n=0

αn(t)e−jφn(t)δ(τ − τn(t)), (3.6)

where c(τ, t) represents the equivalent lowpass response of the channel at time t to an impulse at time t−τ .
Substituting (3.6) back into (3.5) yields (3.4), thereby confirming that (3.6) is the channel’s equivalent
lowpass time-varying impulse response:

r(t) = <
{[∫ ∞

−∞
c(τ, t)u(t− τ)dτ

]
ej2πfct

}

= <



∫ ∞

−∞

N(t)∑
n=0

αn(t)e−jφn(t)δ(τ − τn(t))u(t− τ)dτ


 ej2πfct




2See Appendix A for discussion of the lowpass equivalent representation for bandpass signals and systems.

65

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


= <



N(t)∑
n=0

αn(t)e−jφn(t)
(∫ ∞

−∞
δ(τ − τn(t))u(t− τ)dτ

) ej2πfct




= <



N(t)∑
n=0

αn(t)e−jφn(t)u(t− τn(t))


 ej2πfct


 ,

where the last equality follows from the sifting property of delta functions:
∫
δ(τ − τn(t))u(t − τ)dτ =

δ(t − τn(t)) ∗ u(t) = u(t − τn(t)). Some channel models assume a continuum of multipath delays, in
which case the sum in (3.6) becomes an integral which simplifies to a time-varying complex amplitude
associated with each multipath delay τ :

c(τ, t) =
∫
α(ξ, t)e−jφ(ξ,t)δ(τ − ξ)dξ = α(τ, t)e−jφ(τ,t). (3.7)

To give a concrete example of a time-varying impulse response, consider the system shown in Figure 3.2,
where each multipath component corresponds to a single reflector. At time t1 there are three multipath
components associated with the received signal with amplitude, phase, and delay triple (αi, φi, τi), i =
1, 2, 3. Thus, impulses that were launched into the channel at time t1 − τi, i = 1, 2, 3 will all be received
at time t1, and impulses launched into the channel at any other time will not be received at t1 (because
there is no multipath component with the corresponding delay). The time-varying impulse response
corresponding to t1 equals

c(τ, t1) =
2∑

n=0

αne
−jφnδ(τ − τn) (3.8)

and the channel impulse response for t = t1 is shown in Figure 3.3. Figure 3.2 also shows the system at
time t2, where there are two multipath components associated with the received signal with amplitude,
phase, and delay triple (α′

i, φ
′
i, τ

′
i), i = 1, 2. Thus, impulses that were launched into the channel at time

t2 − τ ′i , i = 1, 2 will all be received at time t2, and impulses launched into the channel at any other time
will not be received at t2. The time-varying impulse response at t2 equals

c(τ, t2) =
1∑

n=0

α′
ne

−jφ′nδ(τ − τ ′n) (3.9)

and is also shown in Figure 3.3.

α ϕ τ

α ϕ τ

1 1
(       ,       ,      )1

2 2
(       ,       ,      )2

0
α

0
ϕ(       ,       ,      )τ

0

α ϕ τ
1 1

(       ,       ,      )1

’ ’ ’

’ ’ ’

0
α

0
ϕ(       ,       ,      )τ

0

System at t  1 System at t  2

Figure 3.2: System Multipath at Two Different Measurement Times.
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Figure 3.3: Response of Nonstationary Channel.

If the channel is time-invariant then the time-varying parameters in c(τ, t) become constant, and
c(τ, t) = c(τ) is just a function of τ :

c(τ) =
N∑
n=0

αne
−jφnδ(τ − τn), (3.10)

for channels with discrete multipath components, and c(τ) = α(τ)e−jφ(τ) for channels with a continuum
of multipath components. For stationary channels the response to an impulse at time t1 is just a shifted
version of its response to an impulse at time t2, t1 6= t2.

Example 3.1: Consider a wireless LAN operating in a factory near a conveyor belt. The transmitter
and receiver have a LOS path between them with gain α0, phase φ0 and delay τ0. Every T0 seconds a
metal item comes down the conveyor belt, creating an additional reflected signal path in addition to the
LOS path with gain α1, phase φ1 and delay τ1. Find the time-varying impulse response c(τ, t) of this
channel.
Solution: For t 6= nT0, n = 1, 2, . . . the channel impulse response corresponds to just the LOS path. For
t = nT0 the channel impulse response has both the LOS and reflected paths. Thus, c(τ, t) is given by

c(τ, t) =

{
α0e

jφ0δ(τ − τ0) t 6= nT0

α0e
jφ0δ(τ − τ0) + α1e

jφ1δ(τ − τ1) t = nT0
(3.11)

Note that for typical carrier frequencies, the nth multipath component will have fcτn(t) >> 1. For
example, with fc = 1 GHz and τn = 50 ns (a typical value for an indoor system), fcτn = 50 >> 1.
Outdoor wireless systems have multipath delays much greater than 50 ns, so this property also holds
for these systems. If fcτn(t) >> 1 then a small change in the path delay τn(t) can lead to a very large
phase change in the nth multipath component with phase φn(t) = 2π(fcτn(t) − φDn − φ0). Rapid phase
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changes in each multipath component gives rise to constructive and destructive addition of the multipath
components comprising the received signal, which in turn causes rapid variation in the received signal
strength. This phenomenon, called fading, will be discussed in more detail in subsequent sections.

The impact of multipath on the received signal depends on whether the spread of time delays asso-
ciated with the LOS and different multipath components is large or small relative to the inverse signal
bandwidth. If this channel delay spread is small then the LOS and all multipath components are typi-
cally nonresolvable, leading to the narrowband fading model described in the next section. If the delay
spread is large then the LOS and all multipath components are typically resolvable, leading to the wide-
band fading model of Section 3.3. The delay spread is typically measured relative to the received signal
component to which the demodulator is synchronized. Thus, for the time-invariant channel model of
(3.10), if the demodulator synchronizes to the LOS signal component at delay τ0 then the delay spread
is a constant given by Tm = maxn τn − τ0. However, if the demodulator synchronizes to a multipath
component with delay equal to the mean delay τ then the delay spread is given by Tm = maxn |τn − τ |.
In time-varying channels the multipath delays vary with time, so the delay spread Tm becomes a random
variable. Moreover, some received multipath components have significantly lower power than others, so
it’s not clear how the delay associated with such components should be used in the characterization of
delay spread. In particular, if the power of a multipath component is below the noise floor then it should
not significantly contribute to the delay spread. These issues are typically dealt with by characterizing
the delay spread relative to the channel power delay profile, defined in Section 3.3.1. Specifically, two
common characterizations of channel delay spread, average delay spread and rms delay spread, are de-
termined from the power delay profile, as we describe in Section 3.3.1. Other characterizations of delay
spread, such as excees delay spread, the delay window, and the delay interval, are sometimes used as well
[6, Chapter 5.4.1],[28, Chapter 6.7.1]. The exact characterization of delay spread is not that important for
understanding the general impact of delay spread on multipath channels, as long as the characterization
roughly measures the delay associated with significant multipath components. In our development below
any reasonable characterization of delay spread Tm can be used, although we will typically use the rms
delay spread. This is the most common characterization since, assuming the demodulator synchronizes to
a signal component at the average delay spread, the rms delay spread is a good measure of the variation
about this average. Channel delay spread is highly dependent on the propagation environment. In indoor
channels delay spread typically ranges from 10 to 1000 nanoseconds, in suburbs it ranges from 200-2000
nanoseconds, and in urban areas it ranges from 1-30 microseconds [6].

3.2 Narrowband fading models

Suppose the delay spread Tm of a channel is small relative to the inverse signal bandwidth B of the
transmitted signal, i.e. Tm << B−1. As discussed above, the delay spread Tm for time-varying channels
is usually characterized by the rms delay spread, but can also be characterized in other ways. Under
most delay spread characterizations Tm << B−1 implies that the delay associated with the ith multipath
component τi ≤ Tm∀i, so u(t− τi) ≈ u(t)∀i and we can rewrite (3.4) as

r(t) = <
{
u(t)ej2πfct

(∑
n

αn(t)e−jφn(t)

)}
. (3.12)

Equation (3.12) differs from the original transmitted signal by the complex scale factor in parentheses.
This scale factor is independent of the transmitted signal s(t) or, equivalently, the baseband signal u(t),
as long as the narrowband assumption Tm << 1/B is satisfied. In order to characterize the random scale
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factor caused by the multipath we choose s(t) to be an unmodulated carrier:

s(t) = <{ej2πfct} = cos 2πfct, (3.13)

which is narrowband for any Tm.
With this assumption the received signal becomes

r(t) = <



N(t)∑
n=0

αn(t)e−jφn(t)


 ej2πfct


 = rI(t) cos 2πfct+ rQ(t) sin 2πfct, (3.14)

where the in-phase and quadrature components are given by

rI(t) =
N(t)∑
n=1

αn(t) cosφn(t), (3.15)

and

rQ(t) =
N(t)∑
n=1

αn(t) sinφn(t). (3.16)

If N(t) is large we can invoke the Central Limit Theorem and the fact that αn(t) and φn(t) are
stationary and ergodic to approximate rI(t) and rQ(t) as jointly Gaussian random processes. The Gaus-
sian property is also true for small N if the αn(t) are Rayleigh distributed and the φn(t) are uniformly
distributed on [−π, π]. This happens when the nth multipath component results from a reflection cluster
with a large number of nonresolvable multipath components [1].

3.2.1 Autocorrelation, Cross Correlation, and Power Spectral Density

We now derive the autocorrelation and cross correlation of the in-phase and quadrature received signal
components rI(t) and rQ(t). Our derivations are based on some key assumptions which generally apply
to propagation models without a dominant LOS component. Thus, these formulas are not typically
valid when a dominant LOS component exists. We assume throughout this section that the amplitude
αn(t), multipath delay τn(t) and Doppler frequency fDn(t) are changing slowly enough such that they
are constant over the time intervals of interest: αn(t) ≈ αn, τn(t) ≈ τn, and fDn(t) ≈ fDn . This will
be true when each of the resolvable multipath components is associated with a single reflector. With
this assumption the Doppler phase shift is3 φDn(t) =

∫
t 2πfDndt = 2πfDnt, and the phase of the nth

multipath component becomes φn(t) = 2πfcτn − 2πfDnt− φ0.
We now make a key assumption: we assume that for the nth multipath component the term fcτn in

φn(t) changes rapidly relative to all other phase terms in this expression. This is a reasonable assumption
since fc is large and hence the term fcτn can go through a 360 degree rotation for a small change in
multipath delay τn. Under this assumption φn(t) is uniformly distributed on [−π, π]. Thus

E[rI(t)] = E[
∑
n

αn cosφn(t)] =
∑
n

E[αn]E[cosφn(t)] = 0, (3.17)

where the second equality follows from the independence of αn and φn and the last equality follows from
the uniform distribution on φn. Similarly we can show that E[rQ(t)] = 0. Thus, the received signal also
has E[r(t)] = 0, i.e. it is a zero-mean Gaussian process. When there is a dominant LOS component in

3We assume a Doppler phase shift at t = 0 of zero for simplicity, since this phase offset will not affect the analysis.
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the channel the phase of the received signal is dominated by the phase of the LOS component, which can
be determined at the receiver, so the assumption of a random uniform phase no longer holds.

Consider now the autocorrelation of the in-phase and quadrature components. Using the indepen-
dence of αn and φn, the independence of φn and φm, n 6= m, and the uniform distribution of φn we get
that

E[rI(t)rQ(t)] = E

[∑
n

αn cosφn(t)
∑
m

αm sinφm(t)

]

=
∑
n

∑
m

E[αnαm]E[cosφn(t) sinφm(t)]

=
∑
n

E[α2
n]E[cosφn(t) sinφn(t)]

= 0. (3.18)

Thus, rI(t) and rQ(t) are uncorrelated and, since they are jointly Gaussian processes, this means they
are independent.

Following a similar derivation as in (3.18) we obtain the autocorrelation of rI(t) as

ArI (t, τ) = E[rI(t)rI(t+ τ)] =
∑
n

E[α2
n]E[cosφn(t) cosφn(t+ τ)]. (3.19)

Now making the substitution φn(t) = 2πfcτn − 2πfDnt− φ0. we get

E[cosφn(t) cosφn(t+τ)] = .5E[cos 2πfDnτ ]+.5E[cos(4πfcτn+4πfDnτn−4πfDnt−2πfDnτ−2φ0)]. (3.20)

Since fcτn changes rapidly relative to all other phase terms and is uniformly distributed, the second
expectation term in (3.20) goes to zero, and thus

ArI (t, τ) = .5
∑
n

E[α2
n]E[cos(2πfDnτ)] = .5

∑
n

E[α2
n] cos(2πvτ cos θn/λ), (3.21)

since fDn = v cos θn/λ is assumed fixed. Note that ArI (t, τ) depends only on τ , ArI (t, τ) = ArI (τ), and
thus rI(t) is a wide-sense stationary (WSS) random process.

Using a similar derivation we can show that the quadrature component is also WSS with autocorrela-
tion ArQ(τ) = ArI (τ). In addition, the cross correlation between the in-phase and quadrature components
depends only on the time difference τ and is given by

ArI ,rQ(t, τ) = ArI ,rQ(τ) = E[rI(t)rQ(t+τ)] = .5
∑
n

E[α2
n] sin(2πvτ cos θn/λ) = −E[rQ(t)rI(t+τ)]. (3.22)

Using these results we can show that the received signal r(t) = rI(t) cos(2πfct) + rQ(t) sin(2πfct) is also
WSS with autocorrelation

Ar(τ) = E[r(t)r(t+ τ)] = ArI (τ) cos(2πfcτ) +ArI ,rQ(τ) sin(2πfcτ). (3.23)

In order to further simplify (3.21) and (3.22), we must make additional assumptions about the
propagation environment. We will focus on the uniform scattering environment introduced by
Clarke [4] and further developed by Jakes [Chapter 1][5]. In this model, the channel consists of many
scatterers densely packed with respect to angle, as shown in Fig. 3.4. Thus, we assume N multipath
components with angle of arrival θn = n∆θ, where ∆θ = 2π/N . We also assume that each multipath
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component has the same received power, so E[α2
n] = P/N , where P is the total received power. Then

(3.21) becomes

ArI (τ) =
.5P
N

N∑
n=1

cos(2πvτ cosn∆θ/λ). (3.24)

Now making the substitution N = 2π/∆θ yields

ArI (τ) =
.5P
2π

N∑
n=1

cos(2πvτ cosn∆θ/λ)∆θ. (3.25)

We now take the limit as the number of scatterers grows to infinity, which corresponds to uniform
scattering from all directions. Then N → ∞, ∆θ → 0, and the summation in (3.25) becomes an integral:

ArI (τ) =
.5P
2π

∫
cos(2πvτ cos θ/λ)dθ = .5PJ0(2πfDτ), (3.26)

where
J0(x) =

1
π

∫ π

0
e−jx cos θdθ

is a Bessel function of the 0th order4. Similarly, for this uniform scattering environment,

ArI ,rQ(τ) =
.5P
2π

∫
sin(2πvτ cos θ/λ)dθ = 0. (3.27)

1
2 ...

Ν

∆θ

∆θ=2π/Ν

Figure 3.4: Dense Scattering Environment

A plot of J0(2πfDτ) is shown in Figure 3.5. There are several interesting observations from this plot.
First we see that the autocorrelation is zero for fDτ ≈ .4 or, equivalently, for vτ ≈ .4λ. Thus, the signal
decorrelates over a distance of approximately one half wavelength, under the uniform θn assumption. This
approximation is commonly used as a rule of thumb to determine many system parameters of interest.

4Note that (3.26) can also be derived by assuming fD = 2πvτ cos θn/λ) in (3.21) is random with θn uniformly distributed,
and then taking expectation with respect to θn. However, based on the underlying physical model, θn can only be uniformly
distributed in a dense scattering environment. So the derivations are equivalent.
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For example, we will see in Chapter 7 that obtaining independent fading paths can be exploited by
antenna diversity to remove some of the negative effects of fading. The antenna spacing must be such
that each antenna receives an independent fading path and therefore, based on our analysis here, an
antenna spacing of .4λ should be used. Another interesting characteristic of this plot is that the signal
recorrelates after it becomes uncorrelated. Thus, we cannot assume that the signal remains independent
from its initial value at d = 0 for separation distances greater than .4λ. As a result, a Markov model is
not completely accurate for Rayleigh fading, because of this recorrelation property. However, in many
system analyses a correlation below .5 does not significantly degrade performance relative to uncorrelated
fading [8, Chapter 9.6.5]. For such studies the fading process can be modeled as Markov by assuming that
once the correlation function falls below .5, i.e. the separation distance is greater than a half wavelength,
the signal has become decorrelated.

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1
Bessel Function

f
D

 τ

J 0(2
π 

f D
 τ

)

Figure 3.5: Bessel Function versus fdτ

The power spectral densities (PSDs) of rI(t) and rQ(t), denoted by SrI (f) and SrQ(f), respectively,
are obtained by taking the Fourier transform of their respective autocorrelation functions relative to the
delay parameter τ . Since these autocorrelation functions are equal, so are the PSDs. Thus

SrI (f) = SrQ(f) = F [ArI (τ)] =

{ Pr
2πfD

1√
1−(f/fD)2

|f | ≤ fD

0 else
(3.28)

This PSD is shown in Figure 3.6.
To obtain the PSD of the received signal r(t) under uniform scattering we use (3.23) with ArI ,rQ(τ) =

0, (3.28), and simple properties of the Fourier transform to obtain

Sr(f) = F [Ar(τ)] = .5[SrI (f − fc) + SrI (f + fc)] =




Pr
4πfD

1√
1−
(

f−fc
fD

)2
|f − fc| ≤ fD

0 else
, (3.29)

Note that this PSD integrates to one. Since the PSD models the power density associated with multipath
components as a function of their Doppler frequency, it can be viewed as the distribution (pdf) of the
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Figure 3.6: In-Phase and Quadrature PSD: SrI (f) = SrQ(f)

random frequency due to Doppler associated with multipath. We see from (3.6) that the PSD Sri(f)
goes to infinity at f = ±fD and, consequently, the PSD Sr(f) goes to infinity at f = ±fc ± fD.
This will not be true in practice, since the uniform scattering model is just an approximation, but for
similar environments the PSD will generally be maximized at frequencies close to the maximum Doppler
frequency. The intuition for this behavior comes from the nature of the cosine function and the fact
that the PSD corresponds to the pdf of the random Doppler frequency fD(θ). To see this, on the left
in Figure 3.7 we plot fD(θ) = fD cos(θ), fD = 2πv/λ along with a dotted line straight-line segment
approximation f

D
(θ) to fD(θ). On the right in this figure we plot PSD Sri(f) along with a dotted line

straight line segment approximation to it Sri(f). We see that cos(θ) ≈ ±1 for a relatively large range of θ
values. Thus, multipath components with angles of arrival in this range of values have Doppler frequency
fD(θ) ≈ ±fD, so the power associated with all of these multipath components will add together in the
PSD at f ≈ fD. This is shown in our approximation by the fact that the segments where f

D
(θ) = ±fD

on the left lead to delta functions at ±fD in the pdf approximation Sri(f) on the right. The segments
where f

D
(θ) has uniform slope on the left lead to the flat part of Sri(f) on the right, since there is one

multipath component contributing power at each angular increment. Formulas for the autocorrelation
and PSD in nonuniform scattering, corresponding to more typical microcell and indoor environments,
can be found in [5, Chapter 1], [11, Chapter 2].

The PSD is useful in constructing simulations for the fading process. A common method for simulat-
ing the envelope of a narrowband fading process is to pass two independent white Gaussian noise sources
with power spectral density N0/2 through lowpass filters with frequency response H(f) that satisfies

SrI (f) = SrQ(f) =
N0

2
|H(f)|2. (3.30)

The filter outputs then correspond to the in-phase and quadrature components of the narrowband fading
process with PSDs SrI (f) and SrQ(f). A similar procedure using discrete filters can be used to generate
discrete fading processes. Most communication simulation packages (e.g. Matlab, COSSAP) have stan-
dard modules that simulate narrowband fading based on this method. More details on this simulation
method, as well as alternative methods, can be found in [11, 6, 7].

We have now completed our model for the three characteristics of power versus distance exhibited
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Figure 3.7: Cosine and PSD Approximation by Straight Line Segments

0

K (dB)

Pr

P
(dB)

10γ

0

t

Path Loss

Shadowing

Narrowband Fading

λlog(.4  )

clog(X  )

log (d/d  )

Figure 3.8: Combined Path Loss, Shadowing, and Narrowband Fading.

in narrowband wireless channels. These characteristics are illustrated in Figure 3.8, adding narrowband
fading to the path loss and shadowing models developed in Chapter 2. In this figure we see the decrease in
signal power due to path loss decreasing as dγ with γ the path loss exponent, the more rapid variations due
to shadowing which change on the order of the decorrelation distance Xc, and the very rapid variations
due to multipath fading which change on the order of half the signal wavelength. If we blow up a small
segment of this figure over distances where path loss and shadowing are constant we obtain Figure 3.9,
where we show dB fluctuation in received power versus linear distance d = vt (not log distance). In this
figure the average received power Pr is normalized to 0 dBm. A mobile receiver traveling at fixed velocity
v would experience the received power variations over time illustrated in this figure.

3.2.2 Envelope and Power Distributions

For any two Gaussian random variables X and Y , both with mean zero and equal variance σ2, it can be
shown that Z =

√
X2 + Y 2 is Rayleigh-distributed and Z2 is exponentially distributed. We saw above

that for φn(t) uniformly distributed, rI and rQ are both zero-mean Gaussian random variables. If we
assume a variance of σ2 for both in-phase and quadrature components then the signal envelope

z(t) = |r(t)| =
√
r2I (t) + r2Q(t) (3.31)
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Figure 3.9: Narrowband Fading.

is Rayleigh-distributed with distribution

pZ(z) =
2z
Pr

exp[−z2/Pr] =
z

σ2
exp[−z2/(2σ2)], x ≥ 0, (3.32)

where Pr =
∑
nE[α2

n] = 2σ2 is the average received signal power of the signal, i.e. the received power
based on path loss and shadowing alone.

We obtain the power distribution by making the change of variables z2(t) = |r(t)|2 in (3.32) to obtain

pZ2(x) =
1
Pr
e−x/Pr =

1
2σ2

e−x/(2σ
2), x ≥ 0. (3.33)

Thus, the received signal power is exponentially distributed with mean 2σ2. The complex lowpass equiv-
alent signal for r(t) is given by rLP (t) = rI(t) + jrQ(t) which has phase θ = arctan(rQ(t)/rI(t)). For
rI(t) and rQ(t) uncorrelated Gaussian random variables we can show that θ is uniformly distributed and
independent of |rLP |. So r(t) has a Rayleigh-distributed amplitude and uniform phase, and the two are
mutually independent.

Example 3.2: Consider a channel with Rayleigh fading and average received power Pr = 20 dB. Find
the probability that the received power is below 10 dB.
Solution. We have Pr = 20 dB=100. We want to find the probability that Z2 < 10 dB=10. Thus

p(Z2 < 10) =
∫ 10

0

1
100

e−x/100dx = .095.

If the channel has a fixed LOS component then rI(t) and rQ(t) are not zero-mean. In this case the
received signal equals the superposition of a complex Gaussian component and a LOS component. The
signal envelope in this case can be shown to have a Rician distribution [9], given by

pZ(z) =
z

σ2
exp

[
−(z2 + s2)

2σ2

]
I0

(
zs

σ2

)
, x ≥ 0, (3.34)
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where 2σ2 =
∑
n,n 6=0 E[α2

n] is the average power in the non-LOS multipath components and s2 = α2
0 is the

power in the LOS component. The function I0 is the modified Bessel function of 0th order. The average
received power in the Rician fading is given by

Pr =
∫ ∞

0
z2pZ(z)dx = s2 + 2σ2. (3.35)

The Rician distribution is often described in terms of a fading parameter K, defined by

K =
s2

2σ2
. (3.36)

Thus, K is the ratio of the power in the LOS component to the power in the other (non-LOS) multipath
components. For K = 0 we have Rayleigh fading, and for K = ∞ we have no fading, i.e. a channel
with no multipath and only a LOS component. The fading parameter K is therefore a measure of the
severity of the fading: a small K implies severe fading, a large K implies more mild fading. Making the
substitution s2 = KP/(K + 1) and 2σ2 = P/(K + 1) we can write the Rician distribution in terms of K
as

pZ(z) =
2z(K + 1)

Pr
exp

[
−K − (K + 1)z2

Pr

]
I0


2z

√
K(K + 1)

Pr


 , z ≥ 0. (3.37)

Both the Rayleigh and Rician distributions can be obtained by using mathematics to capture the
underlying physical properties of the channel models [1, 9]. However, some experimental data does not
fit well into either of these distributions. Thus, a more general fading distribution was developed whose
parameters can be adjusted to fit a variety of empirical measurements. This distribution is called the
Nakagami fading distribution, and is given by

pZ(z) =
2mmx2m−1

Γ(m)Pmr
exp

[
−mz2

Pr

]
, m ≥ .5, (3.38)

where Pr is the average received power. The Nakagami distribution is parameterized by Pr and the fading
parameter m. For m = 1 the distribution in (3.38) reduces to Rayleigh fading. For m = (K+1)2/(2K+1)
the distribution in (3.38) is approximately Rician fading with parameter K. For m = ∞ we get no fading.
Thus, the Nakagami distribution can model Rayleigh and Rician distributions, as well as more general
ones. Note that some empirical measurements support values of the m parameter less than one, in which
case the Nakagami fading causes more severe performance degradation than Rayleigh fading. The power
distribution for Nakagami fading, obtained by a change of variables, is given by

pZ2(x) =
(
m

Pr

)m xm−1

Γ(m)
exp

(−mx
Pr

)
. (3.39)

3.2.3 Level Crossing Rate and Average Fade Duration

The envelope level crossing rate LZ is defined as the expected rate (in crossings per second) at which
the signal envelope crosses the level Z in the downward direction. Obtaining LZ requires the joint
distribution of the signal envelope z = |r| and its derivative ż, p(z, ż). We now derive LZ based on this
joint distribution.

Consider the fading process shown in Figure 3.10. The expected amount of time the signal envelope
spends in the interval (Z,Z + dz) with envelope slope in the range [ż, ż + dż] over time duration dt is
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A = p(Z, ż)dzdżdt. The time required to cross from Z to Z + dz once for a given envelope slope ż is
B = dz/ż. The ratio A/B = żp(Z, ż)dżdt is the expected number of crossings of the envelope z within
the interval (Z,Z + dz) for a given envelope slope ż over time duration dt. The expected number of
crossings of the envelope level Z for slopes between ż and ż+dż in a time interval [0, T ] in the downward
direction is thus ∫ T

0
żp(Z, ż)dżdt = żp(Z, ż)dżT. (3.40)

So the expected number of crossings of the envelope level Z with negative slope over the interval [0, T ] is

NZ = T

∫ ∞

0
żp(Z, ż)dż. (3.41)

Finally, the expected number of crossings of the envelope level Z per second, i.e. the level crossing rate,
is

LZ =
NZ

T
=
∫ ∞

0
żp(Z, ż)dż. (3.42)

Note that this is a general result that applies for any random process.

z(t)=|r(t)|

z

t 1 t 2

t
T

Z

Z+dz

Figure 3.10: Level Crossing Rate and Fade Duration for Fading Process.

The joint pdf of z and ż for Rician fading was derived in [9] and can also be found in [11]. The level
crossing rate for Rician fading is then obtained by using this pdf in (3.42), and is given by

LZ =
√

2π(K + 1)fDρe−K−(K+1)ρ2I0(2ρ
√
K(K + 1)), (3.43)

where ρ = Z/
√
Pr. It is easily shown that the rate at which the received signal power crosses a threshold

value γ0 obeys the same formula (3.43) with ρ =
√
γ0/Pr. For Rayleigh fading (K = 0) the level crossing

rate simplifies to
LZ =

√
2πfDρe−ρ

2
, (3.44)

where ρ = Z/
√
Pr.

We define the average signal fade duration as the average time that the signal envelope stays below a
given target level Z. This target level is often obtained from the signal amplitude or power level required
for a given performance metric like BER. Let ti denote the duration of the ith fade below level Z over
a time interval [0, T ], as illustrated in Figure 3.10. Thus ti equals the length of time that the signal
envelope stays below Z on its ith crossing. Since z(t) is stationary and ergodic, for T sufficiently large
we have

p(z(t) < Z) =
1
T

∑
i

ti. (3.45)
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Thus, for T sufficiently large the average fade duration is

tZ =
1

TLZ

LZT∑
i=1

ti ≈ p(z(t) < Z)
LZ

. (3.46)

Using the Rayleigh distribution for p(z(t) < Z) yields

tZ =
eρ

2 − 1
ρfD

√
2π

(3.47)

with ρ = Z/
√
Pr. Note that (3.47) is the average fade duration for the signal envelope (amplitude) level

with Z the target amplitude and
√
Pr the average envelope level. By a change of variables it is easily

shown that (3.47) also yields the average fade duration for the signal power level with ρ =
√
P0/Pr, where

P0 is the target power level and Pr is the average power level. Note that average fade duration decreases
with Doppler, since as a channel changes more quickly it remains below a given fade level for a shorter
period of time. The average fade duration also generally increases with ρ for ρ >> 1. That is because
as the target level increases relative to the average, the signal is more likely to be below the target. The
average fade duration for Rician fading is more difficult to compute, it can be found in [11, Chapter 1.4].

The average fade duration indicates the number of bits or symbols affected by a deep fade. Specifi-
cally, consider an uncoded system with bit time Tb. Suppose the bit has a high error probability if z < Z.
Then if Tb ≈ tZ , the system will likely experience single error events, where bits that are received in
error have the previous and subsequent bits received correctly (since z > Z for these bits). On the other
hand, if Tb << tZ then many subsequent bits are received with z < Z, so large bursts of errors are likely.
Finally, if Tb >> tZ the fading is averaged out over a bit time in the demodulator, so the fading can
be neglected. These issues will be explored in more detail in Chapter 8, when we consider coding and
interleaving.

Example 3.3:
Consider a voice system with acceptable BER when the received signal power is at or above its aver-

age value. If the BER is below its acceptable level for more than 120 ms, users will turn off their phone.
Find the range of Doppler values in a Rayleigh fading channel such that the average time duration when
users have unacceptable voice quality is less than t = 60 ms.

Solution: The target received signal value is the average, so P0 = Pr and thus ρ = 1. We require

tZ =
e− 1
fD

√
2π

≤ t = .060

and thus fD ≥ (e− 1)/(.060
√

2π) = 11 Hz.

3.2.4 Finite State Markov Models

The complex mathematical characterization of flat-fading described in the previous subsections can be
difficult to incorporate into wireless performance analysis such as the packet error probability. Therefore,
simpler models that capture the main features of flat-fading channels are needed for these analytical
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calculations. One such model is a Finite State Markov Model. In this model fading is approximated
as a discrete-time Markov process with time discretized to a given interval T (typically the symbol
period). Specifically, the set of all possible fading gains is modeled as a set of finite channel states. The
channel varies over these states at each interval T according to a set of Markov transition probabilities.
FSMCs have been used to approximate both mathematical and experimental fading models, including
satellite channels [13], indoor channels [14], Rayleigh fading channels [15, 19], Ricean fading channels
[20], and Nakagami-m fading channels [17]. They have also been used for system design and system
performance analysis in [18, 19]. First-order FSMC models have been shown to be deficient in computing
performance analysis, so higher order models are generally used. The FSMC models for fading typically
model amplitude variations only, although there has been some work on FSMC models for phase in fading
[21] or phase-noisy channels [22].

A detailed FSMC model for Rayleigh fading was developed in [15]. In this model the time-varying
SNR associated with the Rayleigh fading, γ, lies in the range 0 ≤ γ ≤ ∞. The FSMC model discretizes
this fading range into regions so that the jth region Rj is defined as Rj = γ : Aj ≤ γ < Aj+1, where the
region boundaries {Aj} and the total number of fade regions are parameters of the model. This model
assumes that γ stays within the same region over time interval T and can only transition to the same
region or adjacent regions at time T + 1. Thus, given that the channel is in state Rj at time T , at the
next time interval the channel can only transition to Rj−1, Rj , or Rj+1, a reasonable assumption when
fDT is small. Under this assumption the transition probabilities between regions are derived in [15] as

pj,j+1 =
Nj+1Ts
πj

, pj,j−1 =
NjTs
πj

, pj,j = 1 − pj,j+1 − pj,j−1, (3.48)

where Nj is the level-crossing rate at Aj and πj is the steady-state distribution corresponding to the jth
region: πj = p(γ ∈ Rj) = p(Aj ≤ γ < Aj+1).

3.3 Wideband Fading Models

When the signal is not narrowband we get another form of distortion due to the multipath delay spread.
In this case a short transmitted pulse of duration T will result in a received signal that is of duration
T + Tm, where Tm is the multipath delay spread. Thus, the duration of the received signal may be
significantly increased. This is illustrated in Figure 3.11. In this figure, a pulse of width T is transmitted
over a multipath channel. As discussed in Chapter 5, linear modulation consists of a train of pulses where
each pulse carries information in its amplitude and/or phase corresponding to a data bit or symbol5. If
the multipath delay spread Tm << T then the multipath components are received roughly on top of one
another, as shown on the upper right of the figure. The resulting constructive and destructive interference
causes narrowband fading of the pulse, but there is little time-spreading of the pulse and therefore little
interference with a subsequently transmitted pulse. On the other hand, if the multipath delay spread
Tm >> T , then each of the different multipath components can be resolved, as shown in the lower right
of the figure. However, these multipath components interfere with subsequently transmitted pulses. This
effect is called intersymbol interference (ISI).

There are several techniques to mitigate the distortion due to multipath delay spread, including
equalization, multicarrier modulation, and spread spectrum, which are discussed in later chapters. Sys-
tems with linear modulation typically use equalization to mitigate multipath distortion when T << Tm:
equalization is not necessary in such systems if T >> Tm, but this can place significant constraints on

5Linear modulation typically uses nonsquare pulse shapes for bandwidth efficiency, as discussed in Chapter 5.4
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data rate. Multicarrier modulation and spread spectrum actually change the characteristics of the trans-
mitted signal to mostly avoid intersymbol interference, however they still experience multipath distortion
due to frequency-selective fading, which is described in Section 3.3.2.

Σα δ(τ−τ  (  ))i i t
τ
0

t−

τ
0

t− τt− τt−1 2

T+Tm

T+Tm

τt−

τt−

T

τ
0

t−

Pulse 2Pulse 1

Figure 3.11: Multipath Resolution.

The difference between wideband and narrowband fading models is that as the transmit signal
bandwidth B increases so that Tm ≈ B−1, the approximation u(t−τn(t)) ≈ u(t) is no longer valid. Thus,
the received signal is a sum of copies of the original signal, where each copy is delayed in time by τn
and shifted in phase by φn(t). The signal copies will combine destructively when their phase terms differ
significantly, and will distort the direct path signal when u(t− τi) differs from u(t).

Although the approximation in (3.12) no longer applies when the signal bandwidth is large relative
to the inverse of the multipath delay spread, if the number of multipath components is large and the
phase of each component is uniformly distributed then the received signal will still be a zero-mean
complex Gaussian process with a Rayleigh-distributed envelope. However, wideband fading differs from
narrowband fading in terms of the resolution of the different multipath components. Specifically, for
narrowband signals, the multipath components have a time resolution that is less than the inverse of the
signal bandwidth, so the multipath components characterized in Equation (3.6) combine at the receiver
to yield the original transmitted signal with amplitude and phase characterized by random processes.
These random processes are characterized by their autocorrelation or PSD, and their instantaneous
distributions, as discussed in Section 3.2. However, with wideband signals, the received signal experiences
distortion due to the delay spread of the different multipath components, so the received signal can no
longer be characterized by just the amplitude and phase random processes. The effect of multipath on
wideband signals must therefore take into account both the multipath delay spread and the time-variations
associated with the channel.

The starting point for characterizing wideband channels is the equivalent lowpass time-varying chan-
nel impulse response c(τ, t). Let us first assume that c(τ, t) is a continuous6 deterministic function of τ
and t. Recall that τ represents the impulse response associated with a given multipath delay, while t
represents time variations. We can take the Fourier transform of c(τ, t) with respect to t as

Sc(τ, ρ) =
∫ ∞

−∞
c(τ, t)e−j2πρtdt. (3.49)

We call Sc(τ, ρ) the deterministic scattering function of the lowpass equivalent channel impulse
response c(τ, t). Since it is the Fourier transform of c(τ, t) with respect to the time variation parameter t,

6The wideband channel characterizations in this section can also be done for discrete-time channels that are discrete with
respect to τ by changing integrals to sums and Fourier transforms to discrete Fourier transforms.
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the deterministic scattering function Sc(τ, ρ) captures the Doppler characteristics of the channel via the
frequency parameter ρ.

In general the time-varying channel impulse response c(τ, t) given by (3.6) is random instead of
deterministic due to the random amplitudes, phases, and delays of the random number of multipath
components. In this case we must characterize it statistically or via measurements. As long as the
number of multipath components is large, we can invoke the Central Limit Theorem to assume that
c(τ, t) is a complex Gaussian process, so its statistical characterization is fully know from the mean,
autocorrelation, and cross-correlation of its in-phase and quadrature components. As in the narrowband
case, we assume that the phase of each multipath component is uniformly distributed. Thus, the in-phase
and quadrature components of c(τ, t) are independent Gaussian processes with the same autocorrelation,
a mean of zero, and a cross-correlation of zero. The same statistics hold for the in-phase and quadrature
components if the channel contains only a small number of multipath rays as long as each ray has a
Rayleigh-distributed amplitude and uniform phase. Note that this model does not hold when the channel
has a dominant LOS component.

The statistical characterization of c(τ, t) is thus determined by its autocorrelation function, de-
fined as

Ac(τ1, τ2; t,∆t) = E[c∗(τ1; t)c(τ2; t+ ∆t)]. (3.50)

Most channels in practice are wide-sense station (WSS), such that the joint statistics of a channel mea-
sured at two different times t and t+∆t depends only on the time difference ∆t. For wide-sense stationary
channels, the autocorrelation of the corresponding bandpass channel h(τ, t) = <{c(τ, t)ej2πfct} can be
obtained [16] from Ac(τ1, τ2; t,∆t) as7 Ah((τ1, τ2; t,∆t) = .5<{Ac(τ1, τ2; t,∆t)ej2πfc∆t}. We will assume
that our channel model is WSS, in which case the autocorrelation becomes indepedent of t:

Ac(τ1, τ2; ∆t) = .5E[c∗(τ1; t)c(τ2; t+ ∆t)]. (3.51)

Moreover, in practice the channel response associated with a given multipath component of delay τ1
is uncorrelated with the response associated with a multipath component at a different delay τ2 6= τ1,
since the two components are caused by different scatterers. We say that such a channel has uncorrelated
scattering (US). We abbreviate channels that are WSS with US as WSSUS channels. The WSSUS channel
model was first introduced by Bello in his landmark paper [16], where he also developed two-dimensional
transform relationships associated with this autocorrelation. These relationships will be discussed in
Section 3.3.4. Incorporating the US property into (3.51) yields

E[c∗(τ1; t)c(τ2; t+ ∆t)] = Ac(τ1; ∆t)δ[τ1 − τ2]
4
= Ac(τ ; ∆t), (3.52)

where Ac(τ ; ∆t) gives the average output power associated with the channel as a function of the multipath
delay τ = τ1 = τ2 and the difference ∆t in observation time. This function assumes that τ1 and τ2 satisfy
|τ1 − τ2| > B−1, since otherwise the receiver can’t resolve the two components. In this case the two
components are modeled as a single combined multipath component with delay τ ≈ τ1 ≈ τ2.

The scattering function for random channels is defined as the Fourier transform of Ac(τ ; ∆t) with
respect to the ∆t parameter:

Sc(τ, ρ) =
∫ ∞

−∞
Ac(τ,∆t)e−j2πρ∆td∆t. (3.53)

7It is easily shown that the autocorrelation of the passband channel response h(τ, t) is given by E[h(τ1, t)h(τ2, t + ∆t)] =
.5<{Ac(τ1, τ2; t, ∆t)ej2πfc∆} + .5<{Âc(τ1, τ2; t, ∆t)ej2πfc(2t+∆t)}, where Âc(τ1, τ2; t, ∆t) = E[c(τ1; t)c(τ2; t + ∆t)]. However,
if c(τ, t) is WSS then Âc(τ1, τ2; t, ∆t) = 0, so E[h(τ1, t)h(τ2, t + ∆t)] = .5<{Ac(τ1, τ2; t, ∆t)ej2πfc∆}.
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The scattering function characterizes the average output power associated with the channel as a function
of the multipath delay τ and Doppler ρ. Note that we use the same notation for the deterministic
scattering and random scattering functions since the function is uniquely defined depending on whether
the channel impulse response is deterministic or random. A typical scattering function is shown in
Figure 3.12.

Relative Power 
Densi ty (dB)

Delay Spread ( s)

Doppler (Hz)

Figure 3.12: Scattering Function.

The most important characteristics of the wideband channel, including the power delay profile,
coherence bandwidth, Doppler power spectrum, and coherence time, are derived from the channel auto-
correlation Ac(τ,∆t) or scattering function S(τ, ρ). These characteristics are described in the subsequent
sections.

3.3.1 Power Delay Profile

The power delay profile Ac(τ), also called the multipath intensity profile, is defined as the auto-

correlation (3.52) with ∆t = 0: Ac(τ)
4
= Ac(τ, 0). The power delay profile represents the average power

associated with a given multipath delay, and is easily measured empirically. The average and rms delay
spread are typically defined in terms of the power delay profile Ac(τ) as

µTm =
∫∞
0 τAc(τ)dτ∫∞
0 Ac(τ)dτ

, (3.54)

and

σTm =

√∫∞
0 (τ − µTm)2Ac(τ)dτ∫∞

0 Ac(τ)dτ
. (3.55)

Note that if we define the pdf pTm of the random delay spread Tm in terms of Ac(τ) as

pTm(τ) = p(Tm = τ) =
Ac(τ)∫∞

0 Ac(τ)dτ
(3.56)

then µTm and σTm are the mean and rms values of Tm, respectively, relative to this pdf. Defining
the pdf of Tm by (3.56) or, equivalently, defining the mean and rms delay spread by (3.54) and (3.55),
respectively, weights the delay associated with a given multipath component by its relative power, so that
weak multipath components contribute less to delay spread than strong ones. In particular, multipath
components below the noise floor will not significantly impact these delay spread characterizations.
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The time delay Tm where Ac(τ) ≈ 0 for τ ≥ Tm can be used to roughly characterize the delay
spread of the channel, and this value is often taken to be the rms delay spread, i.e. Tm = σTm . With this
approximation a linearly modulated signal with symbol period Ts experiences significant ISI if Ts << Tm.
Conversely, when Ts >> Tm the system experiences negligible ISI. For calculations one can assume that
Ts << Tm implies Ts < Tm/10 and Ts >> Tm implies Ts > 10Tm. When Ts is within an order of
magnitude of Tm then there will be some ISI which may or may not significantly degrade performance,
depending on the specifics of the system and channel. We will study the performance degradation due to
ISI in linearly modulated systems as well as ISI mitigation methods in later chapters.

While µTm ≈ σTm in most channels with a large number of scatterers, a channel with no LOS
component and a small number of multipath components with approximately the same large delay will
have µTm >> σTm . In this case the large value of µTm is a misleading metric of delay spread, since in
fact all copies of the transmitted signal arrive at rougly the same time. That is why rms delay spread is
used more often than mean delay spread to characterize time-spreading in multipath channels.

Example 3.4:
The power delay spectrum is often modeled as having a one-sided exponential distribution:

Ac(τ) =
1
Tm

e−τ/Tm , τ ≥ 0.

Show that the average delay spread (3.54) is µTm = Tm and find the rms delay spread (3.55).
Solution: It is easily shown that Ac(τ) integrates to one. The average delay spread is thus given by

µTm =
1
Tm

∫ ∞

0
τe−τ/Tm = Tm.

σTm =

√
1
Tm

∫ ∞

0
τ2e−τ/Tmdτ − µ2

Tm
= 2Tm.− Tm = Tm.

Thus, the average and rms delay spread are the same for exponentially distributed power delay profiles.

Example 3.5:
Consider a wideband channel with multipath intensity profile

Ac(τ) =

{
e−τ 0 ≤ τ ≤ 20 µsec.
0 else

.

Find the mean and rms delay spreads of the channel and find the maximum symbol period such that a
linearly-modulated signal transmitted through this channel does not experience ISI.

Solution: The average delay spread is

µTm =
∫ 20∗10−6

0 τe−τdτ∫ 20∗10−6

0 e−τdτ
= 10 µsec.
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The rms delay spread is

σTm =
∫ 20∗10−6

0 (τ − µTm)2e−τdτ∫ 20∗10−6

0 e−τdτ
= 5.76 µsec.

We see in this example that the mean delay spread is roughly twice its rms value, in contrast to the prior
example where they were equal. This is due to the fact that in this example all multipath components
have delay spread less than 20 µsec, which limits the rms spread. When the average and rms delay
spreads differ significantly we use rms delay spread to determine ISI effects. Specifically, to avoid ISI
we require linear modulation to have a symbol period Ts that is large relative to σTm . Taking this to
mean that Ts > 10σTm yields a symbol period of Ts = 57.6 µsec or a symbol rate of Rs = 1/Ts = 17.35
Kilosymbols per second. This is a highly constrained symbol rate for many wireless systems. Specifically,
for binary modulations where the symbol rate equals the data rate (bits per second, or bps), high-quality
voice requires on the order of 32 Kbps and high-speed data can requires on the order of 10-100 Mbps.

3.3.2 Coherence Bandwidth

We can also characterize the time-varying multipath channel in the frequency domain by taking the
Fourier transform of c(τ, t) with respect to τ . Specifically, define the random process

C(f ; t) =
∫ ∞

−∞
c(τ ; t)e−j2πfτdτ. (3.57)

Since c(τ ; t) is a complex zero-mean Gaussian random variable in t, the Fourier transform above just
represents the sum8 of complex zero-mean Gaussian random processes, and therefore C(f ; t) is also a
zero-mean Gaussian random process completely characterized by its autocorrelation. Since c(τ ; t) is
WSS, its integral C(f ; t) is as well. Thus, the autocorrelation of (3.57) is given by

AC(f1, f2; ∆t) = E[C∗(f1; t)C(f2; t+ ∆t)]. (3.58)

We can simplify AC(f1, f2; ∆t) as

AC(f1, f2; ∆t) = E

[∫ ∞

−∞
c∗(τ1; t)ej2πf1τ1dτ1

∫ ∞

−∞
c(τ2; t+ ∆t)e−j2πf2τ2dτ2

]

=
∫ ∞

−∞

∫ ∞

−∞
E[c∗(τ1; t)c(τ2; t+ ∆t)]ej2πf1τ1e−j2πf2τ2dτ1dτ2

=
∫ ∞

−∞
Ac(τ,∆t)e−j2π(f2−f1)τdτ.

= AC(∆f ; ∆t) (3.59)

where ∆f = f2 − f1 and the third equality follows from the WSS and US properties of c(τ ; t). Thus,
the autocorrelation of C(f ; t) in frequency depends only on the frequency difference ∆f . The function
AC(∆f ; ∆t) can be measured in practice by transmitting a pair of sinusoids through the channel that
are separated in frequency by ∆f and calculating their cross correlation at the receiver for the time
separation ∆t.

8We can express the integral as a limit of a discrete sum.
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If we define AC(∆f)
4
= AC(∆f ; 0) then from (3.59),

AC(∆f) =
∫ ∞

−∞
Ac(τ)e−j2π∆fτdτ. (3.60)

So AC(∆f) is the Fourier transform of the power delay profile. Since AC(∆f) = E[C∗(f ; t)C(f+∆f ; t] is
an autocorrelation, the channel response is approximately independent at frequency separations ∆f where
AC(∆f) ≈ 0. The frequency Bc where AC(∆f) ≈ 0 for all ∆f > Bc is called the coherence bandwidth
of the channel. By the Fourier transform relationship between Ac(τ) and AC(∆f), if Ac(τ) ≈ 0 for τ > Tm
then AC(∆f) ≈ 0 for ∆f > 1/Tm. Thus, the minimum frequency separation Bc for which the channel
response is roughly independent is Bc ≈ 1/Tm, where Tm is one of the delay spread characterizations of
Ac(τ), typically its rms delay spread. A more general approximation is Bc ≈ k/Tm where k depends on
the shape of Ac(τ) and the precise specification of coherence bandwidth. For example, Lee has shown
that Bc ≈ .02/σTm approximates the range of frequencies over which channel correlation exceeds 0.9,
while Bc ≈ .2/σTm approximates the range of frequencies over which this correlation exceeds 0.5. [12].

In general, if we are transmitting a narrowband signal with bandwidth B << Bc, then fading across
the entire signal bandwidth is highly correlated, i.e. the fading is roughly equal across the entire signal
bandwidth. This is usually referred to as flat fading. On the other hand, if the signal bandwidth B >>
Bc, then the channel amplitude values at frequencies separated by more than the coherence bandwidth
are roughly independent. Thus, the channel amplitude varies widely across the signal bandwidth. In
this case the channel is called frequency-selective. When B ≈ Bc then channel behavior is somewhere
between flat and frequency-selective fading. Note that in linear modulation the signal bandwidth B is
inversely proportional to the symbol time Ts, so flat fading corresponds to Ts ≈ 1/B >> 1/Bc ≈ Tm,
i.e. the case where the channel experiences negligible ISI. Frequency-selective fading corresponds to
Ts ≈ 1/B << 1/Bc = Tm, i.e. the case where the linearly modulated signal experiences significant
ISI. Wideband signaling formats that reduce ISI, such as OFDM and CDMA, still experience frequency-
selective fading across their entire signal bandwidth which causes performance degradation, as will be
discussed in Chapters 12 and 13, respectively.

We illustrate the power delay profile Ac(τ) and its Fourier transform AC(∆f) in Figure 3.13. This
figure also shows two signals superimposed on AC(∆f), a narrowband signal with bandwidth much less
than Bc and a wideband signal with bandwidth much greater than Bc. We see that the autocorrelation
AC(∆f) is flat across the bandwidth of the narrowband signal, so this signal will experience flat fading
or, equivalently, negligible ISI. The autocorrelation AC(∆f) goes to zero within the bandwidth of the
wideband signal, which means that fading will be independent across different parts of the signal band-
width, so fading is frequency selective and a linearly-modulated signal transmitted through this channel
will experience significant ISI.

Example 3.6: In indoor channels σTm ≈ 50 ns whereas in outdoor microcells σTm ≈ 30µs. Find the
maximum symbol rate Rs = 1/Ts for these environments such that a linearly-modulated signal transmit-
ted through these environments experiences negligible ISI.

Solution. We assume that negligible ISI requires Ts >> σTm , i.e. Ts ≥ 10σTm . This translates to a
symbol rate Rs = 1/Ts ≤ .1/σTm . For σTm ≈ 50 ns this yields Rs ≤ 200 Kbps and for σTm ≈ 30µs this
yields Rs ≤ 3.33 Kbps. Note that indoor systems currently support up to 50 Mbps and outdoor systems
up to 200 Kbps. To maintain these data rates for a linearly-modulated signal without severe performance
degradation due to ISI, some form of ISI mitigation is needed. Moreover, ISI is less severe in indoor
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Figure 3.13: Power Delay Profile, RMS Delay Spread, and Coherence Bandwidth, and Coherence Band-
width.

systems than in outdoor systems due to their lower delay spread values, which is why indoor systems
tend to have higher data rates than outdoor systems.

3.3.3 Doppler Power Spectrum and Channel Coherence Time

The time variations of the channel which arise from transmitter or receiver motion cause a Doppler
shift in the received signal. This Doppler effect can be characterized by taking the Fourier transform of
AC(∆f ; ∆t) relative to ∆t:

SC(∆f ; ρ) =
∫ ∞

−∞
AC(∆f ; ∆t)e−j2πρ∆td∆t. (3.61)

In order the characterize Doppler at a single frequency, we set ∆f to zero and define SC(ρ)
4
= SC(0; ρ).

It is easily seen that

SC(ρ) =
∫ ∞

−∞
AC(∆t)e−j2πρ∆td∆t (3.62)

where AC(∆t)
4
= AC(∆f = 0; ∆t). Note that AC(∆t) is an autocorrelation function defining how

the channel impulse response decorrelates over time. In particular AC(∆t = T ) = 0 indicates that
observations of the channel impulse response at times separated by T are uncorrelated and therefore
independent, since the channel is a Gaussian random process. We define the channel coherence time
Tc to be the range of values over which AC(∆t) is approximately nonzero. Thus, the time-varying channel
decorrelates after approximately Tc seconds. The function SC(ρ) is called the Doppler power spectrum
of the channel: as the Fourier transform of an autocorrelation it gives the PSD of the received signal as a
function of Doppler ρ. The maximum ρ value for which |SC(ρ)| is greater than zero is called the Doppler
spread of the channel, and is denoted by BD. By the Fourier transform relationship between AC(∆t)
and SC(ρ), BD ≈ 1/Tc. If the transmitter and reflectors are all stationary and the receiver is moving
with velocity v, then BD ≤ v/λ = fD. Recall that in the narrowband fading model samples became
independent at time ∆t = .4/fD, so in general BD ≈ k/Tc where k depends on the shape of Sc(ρ). We
illustrate the Doppler power spectrum SC(ρ) and its inverse Fourier transform AC(∆t) in Figure 3.14.
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Figure 3.14: Doppler Power Spectrum, Doppler Spread, and Coherence Time.

Example 3.7:
For a channel with Doppler spread Bd = 80 Hz, what time separation is required in samples of the

received signal such that the samples are approximately independent.

Solution: The coherence time of the channel is Tc ≈ 1/Bd = 1/80, so samples spaced 12.5 ms apart are
approximately uncorrelated and thus, given the Gaussian properties of the underlying random process,
these samples are approximately independent.

3.3.4 Transforms for Autocorrelation and Scattering Functions

From (3.61) we see that the scattering function Sc(τ ; ρ) defined in (3.53) is the inverse Fourier transform
of SC(∆f ; ρ) in the ∆f variable. Furthermore Sc(τ ; ρ) and AC(∆f ; ∆t) are related by the double Fourier
transform

Sc(τ ; ρ) =
∫ ∞

−∞

∫ ∞

−∞
AC(∆f ; ∆t)e−j2πρ∆tej2πτ∆fd∆td∆f. (3.63)

The relationships among the four functions AC(∆f ; ∆t), Ac(τ ; ∆t), SC(∆f ; ρ), and Sc(τ ; ρ) are
shown in Figure 3.15

Empirical measurements of the scattering function for a given channel are often used to approximate
empirically the channel’s delay spread, coherence bandwidth, Doppler spread, and coherence time. A
channel with empirical scattering function Sc(τ ; ρ) approximates the delay spread Tm by computing the
empirical power delay profile Ac(τ) from Ac(τ,∆t) = F−1

ρ [Sc(τ ; ρ)] with ∆t = 0 and then characterizing
the delay spread from this power delay profile, e.g. using the rms delay spread (3.55). The coherence
bandwidth can then be approximated as Bc ≈ 1/Tm. Similarly, the Doppler spread BD is approximated
as the range of ρ values over which S(0; ρ) is roughly nonzero, with the coherence time Tc ≈ 1/BD.
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Figure 3.15: Fourier Transform Relationships

3.4 Discrete-Time Model

Often the time-varying impulse response channel model is too complex for simple analysis. In this
case a discrete-time approximation for the wideband multipath model can be used. This discrete-time
model, developed by Turin in [3], is especially useful in the study of spread spectrum systems and RAKE
receivers, which is covered in Chapter 13. This discrete-time model is based on a physical propagation
environment consisting of a composition of isolated point scatterers, as shown in Figure 3.16. In this
model, the multipath components are assumed to form subpath clusters: incoming paths on a given
subpath with approximate delay τi are combined, and incoming paths on different subpath clusters ri
and rj with |ri − rj | > 1/B can be resolved, where B denotes the signal bandwidth.

Figure 3.16: Point Scatterer Channel Model

The channel model of (3.6) is modified to include a fixed number N these subpath clusters as

c(τ ; t) =
N∑
n=1

αn(t)e−jφn(t)δ(τ − τn(t)). (3.64)

The statistics of the received signal for a given t are thus given by the statistics of {τn}N1 , {αn}N1 , and
{φn}N1 . The model can be further simplified using a discrete time approximation as follows: For a fixed
t, the time axis is divided into M equal intervals of duration T such that MT ≥ Tm, where Tm is the
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delay spread of the channel, which is derived empirically. The subpaths are restricted to lie in one of the
M time interval bins, as shown in Figure 3.17. The multipath spread of this discrete model is Tm = MT ,
and the resolution between paths is T . This resolution is based on the transmitted signal bandwidth:
T ≈ 1/B. The statistics for the nth bin are that rn, 1 ≤ n ≤M , is a binary indicator of the existance of a
multipath component in the nth bin: so rn is one if there is a multipath component in the nth bin and zero
otherwise. If rn = 1 then (an, θn), the amplitude and phase corresponding to this multipath component,
follow an empirically determined distribution. This distribution is obtained by sample averages of (an, θn)
for each n at different locations in the propagation environment. The empirical distribution of (an, θn)
and (am, θm), n 6= m, is generally different, it may correspond to the same family of fading but with
different parameters (e.g. Ricean fading with different K factors), or it may correspond to different
fading distributions altogether (e.g. Rayleigh fading for the nth bin, Nakagami fading for the mth bin).
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Figure 3.17: Discrete Time Approximation

This completes the statistical model for the discrete time approximation for a single snapshot. A
sequence of profiles will model the signal over time as the channel impulse response changes, e.g. the
impulse response seen by a receiver moving at some nonzero velocity through a city. Thus, the model
must include both the first order statistics of (τn, αn, φn) for each profile (equivalently, each t), but also
the temporal and spatial correlations (assumed Markov) between them. More details on the model and
the empirically derived distributions for N and for (τn, αn, φn) can be found in [3].

3.5 Spatio-Temporal Models

Multiple antennas at the transmitter and/or receiver are becoming very common in wireless systems,
due to their diversity and capacity benefits. Systems with multiple antennas require channel models that
characterize both spatial (angle of arrival) and temporal characteristics of the channel. A typical model
assumes the channel is composed of several scattering centers which generate the multipath [23, 24].
The location of the scattering centers relative to the receiver dictate the angle of arrival (AOA) of the
corresponding multipath components. Models can be either two dimensional or three dimensional.

Consider a two-dimensional multipath environment where the receiver or transmitter has an antenna
array with M elements. The time-varying impulse response model (3.6) can be extended to incorporate
AOA for the array as follows.

c(τ, t) =
N(t)∑
n=0

αn(t)e−jφn(t)a(θn(t))δ(τ − τn(t)), (3.65)

where φn(t) corresponds to the phase shift at the origin of the array and a(θn(t)) is the array response
vector given by

a(θn(t)) = [e−jψn,1, . . . , e−jψn,M ]T , (3.66)

where ψn,i = [xi cos θn(t) + yi sin θn(t)]2π/λ for (xi, yi) the antenna location relative to the origin and
θn(t) the AOA of the multipath relative to the origin of the antenna array. Details for the distribution of
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the AOA for different propagation environments along with the corresponding correlations across antenna
elements can be found in [24]

Extending the two dimensional models to three dimensions requires characterizing the elevation
AOAs for multipath as well as the azimuth angles. Different models for such 3-D channels have been
proposed in [25, 26, 27]. In [23] the Jakes model is extended to produce spatio-temporal characteristics
using the ideas of [25, 26, 27]. Several other papers on spatio-temporal modeling can be found in [29].
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Chapter 3 Problems

1. Consider a two-path channel consisting of a direct ray plus a ground-reflected ray where the trans-
mitter is a fixed base station at height h and the receiver is mounted on a truck also at height h.
The truck starts next to the base station and moves away at velocity v. Assume signal attenuation
on each path follows a free-space path loss model. Find the time-varying channel impulse at the
receiver for transmitter-receiver separation d = vt sufficiently large such that the length of the
reflected path can be approximated by r + r′ ≈ d+ 2h2/d.

2. Find a formula for the multipath delay spread Tm for a two-path channel model. Find a simplified
formula when the transmitter-receiver separation is relatively large. Compute Tm for ht = 10m,
hr = 4m, and d = 100m.

3. Consider a time-invariant indoor wireless channel with LOS component at delay 23 nsec, a multipath
component at delay 48 nsec, and another multipath component at delay 67 nsec. Find the delay
spread assuming the demodulator synchronizes to the LOS component. Repeat assuming that the
demodulator synchronizes to the first multipath component.

4. Show that the minimum value of fcτn for a system at fc = 1 GHz with a fixed transmitter and a
receiver separated by more than 10 m from the transmitter is much greater than 1.

5. Prove that for X and Y independent zero-mean Gaussian random variables with variance σ2, the
distribution of Z =

√
X2 + Y 2 is Rayleigh-distributed and the distribution of Z2 is exponentially-

distributed.

6. Assume a Rayleigh fading channel with the average signal power 2σ2 = −80 dBm. What is the
power outage probability of this channel relative to the threshold Po = −95 dBm? How about
Po = −90 dBm?

7. Assume an application that requires a power outage probability of .01 for the threshold Po = −80
dBm, For Rayleigh fading, what value of the average signal power is required?

8. Assume a Rician fading channel with 2σ2 = −80 dBm and a target power of Po = −80 dBm. Find
the outage probability assuming that the LOS component has average power s2 = −80 dBm.

9. This problem illustrates that the tails of the Ricean distribution can be quite different than its
Nakagami approximation. Plot the CDF of the Ricean distribution for K = 1, 5, 10 and the cor-
responding Nakagami distribution with m = (K + 1)2/(2K + 1). In general, does the Ricean
distribution or its Nakagami approximation have a larger outage probability p(γ < x) for x large?

10. In order to improve the performance of cellular systems, multiple base stations can receive the
signal transmitted from a given mobile unit and combine these multiple signals either by selecting
the strongest one or summing the signals together, perhaps with some optimized weights. This
typically increases SNR and reduces the effects of shadowing. Combining of signals received from
multiple base stations is called macrodiversity, and in this problem we explore the benefits of this
technique. Diversity will be covered in more detail in Chapter 7.

Consider a mobile at the midpoint between two base stations in a cellular network. The received
signals (in dBW) from the base stations are given by

Pr,1 = W + Z1,
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Pr,2 = W + Z2,

where Z1,2 are N (0, σ2) random variables. We define outage with macrodiversity to be the event
that both Pr,1 and Pr,2 fall below a threshould T .

(a) Interpret the terms W,Z1, Z2 in Pr,1 and Pr,2.

(b) If Z1 and Z2 are independent, show that the outage probability is given by

Pout = [Q(∆/σ)]2,

where ∆ = W − T is the fade margin at the mobile’s location.

(c) Now suppose Z1 and Z2 are correlated in the following way:

Z1 = aY1 + b Y,

Z2 = aY2 + b Y,

where Y, Y1, Y2 are independent N (0, σ2) random variables, and a, b are such that a2 + b2 = 1.
Show that

Pout =
∫ +∞

−∞
1√
2π

[
Q

(
∆ + byσ

|a|σ
)]2

e−y
2/2dy.

(d) Compare the outage probabilities of (b) and (c) for the special case of a = b = 1/
√

2, σ = 8
and ∆ = 5.

11. The goal of this problem is to develop a Rayleigh fading simulator for a mobile communications
channel using the method based on filtering Gaussian processes based on the in-phase and quadra-
ture PSDs described in 3.2.1. In this problem you must do the following:

(a) Develop simulation code to generate a signal with Rayleigh fading amplitude over time. Your
sample rate should be at least 1000 samples/sec, the average received envelope should be 1,
and your simulation should be parameterized by the Doppler frequency fD. Matlab is the
easiest way to generate this simulation, but any code is fine.

(b) Write a description of your simulation that clearly explains how your code generates the fading
envelope using a block diagram and any necessary equations.

(c) Turn in your well-commented code.

(d) Provide plots of received amplitude (dB) vs. time for fD = 1, 10, 100 Hz. over 2 seconds.

12. For a Rayleigh fading channel with average power Pr = 30dB, compute the average fade duration
for target fade values P0 = 0 dB, P0 = 15 dB, and P0 = 30dB.

13. Derive a formula for the average length of time a Rayleigh fading process with average power Pr
stays above a given target fade value P0. Evaluate this average length of time for Pr = 20 dB and
P0 = 25 dB.

14. Assume a Rayleigh fading channel with average power Pr = 10 dB and Doppler fD = 80 Hz. We
would like to approximate the channel using a finite state Markov model with eight states. The
regions Rj corresponds to R1 = γ : −∞ ≤ γ ≤ −10dB, R2 = γ : −10dB ≤ γ ≤ 0dB, R3 = γ : 0dB ≤
γ ≤ 5dB, R4 = γ : 5dB ≤ γ ≤ 10dB, R5 = γ : 10dB ≤ γ ≤ 15dB, R6 = γ : 15dB ≤ γ ≤ 20dB,
R7 = γ : 20dB ≤ γ ≤ 30dB, R8 = γ : 30dB ≤ γ ≤ ∞. Find the transition probabilties between
each region for this model.
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15. Consider the following channel scattering function obtained by sending a 900 MHz sinusoidal input
into the channel:

S(τ, ρ) =



α1δ(τ) ρ = 70Hz.
α2δ(τ − .022µsec) ρ = 49.5Hz.
0 else

where α1 and α2 are determined by path loss, shadowing, and multipath fading. Clearly this
scattering function corresponds to a 2-ray model. Assume the transmitter and receiver used to
send and receive the sinusoid are located 8 meters above the ground.

(a) Find the distance and velocity between the transmitter and receiver.

(b) For the distance computed in part (a), is the path loss as a function of distance proportional
to d−2 or d−4? Hint: use the fact that the channel is based on a 2-ray model.

(c) Does a 30 KHz voice signal transmitted over this channel experience flat or frequency-selective
fading?

16. Consider a wideband channel characterized by the autocorrelation function

Ac(τ,∆t) =

{
sinc(W∆t) 0 ≤ τ ≤ 10µsec.
0 else

,

where W = 100Hz and sinc(x) = sin(πx)/(πx).

(a) Does this channel correspond to an indoor channel or an outdoor channel, and why?

(b) Sketch the scattering function of this channel.

(c) Compute the channel’s average delay spread, rms delay spread, and Doppler spread.

(d) Over approximately what range of data rates will a signal transmitted over this channel exhibit
frequency-selective fading?

(e) Would you expect this channel to exhibit Rayleigh or Ricean fading statistics, and why?

(f) Assuming that the channel exhibits Rayleigh fading, what is the average length of time that
the signal power is continuously below its average value.

(g) Assume a system with narrowband binary modulation sent over this channel. Your system
has error correction coding that can correct two simultaneous bit errors. Assume also that you
always make an error if the received signal power is below its average value, and never make
an error if this power is at or above its average value. If the channel is Rayleigh fading then
what is the maximum data rate that can be sent over this channel with error-free transmission,
making the approximation that the fade duration never exceeds twice its average value.

17. Let a scattering function S(τ, ρ) be nonzero over 0 ≤ τ ≤ .1 ms and −.1 ≤ ρ ≤ .1 Hz. Assume that
the power of the scattering function is approximately uniform over the range where it is nonzero.

(a) What are the multipath spread and the doppler spread of the channel?

(b) Suppose you input to this channel two identical sinusoids separated in time by ∆t. What is
the minimum value of ∆f for which the channel response to the first sinusoid is approximately
independent of the channel response to the second sinusoid.
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(c) For two sinusoidal inputs to the channel u1(t) = sin 2πft and u2(t) = sin 2πf(t+ ∆t), what is
the minimum value of ∆t for which the channel response to u1(t) is approximately independent
of the channel response to u2(t).

(d) Will this channel exhibit flat fading or frequency-selective fading for a typical voice channel
with a 3 KHz bandwidth? How about for a cellular channel with a 30 KHz bandwidth?
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Chapter 4

Capacity of Wireless Channels

4.1 Introduction

The growing demand for wireless communication makes it important to determine the capacity limits
of these channels. These capacity limits dictate the maximum data rates that can be achieved without
any constraints on delay or complexity of the encoder and decoder. Channel capacity was pioneered by
Claude Shannon in the late 1940s, where he developed a mathematical theory of communication based
on the notion of mutual information between the input and output of a channel [1, 2, 3]. Shannon defined
capacity as the mutual information maximized over all possible input distributions. The significance of
this mathematical construct was Shannon’s coding theorem and converse, which proved that a code did
exist that could achieve a data rate close to capacity with negligible probability of error, and that any data
rate higher than capacity could not be achieved without an error probability bounded away from zero.
Shannon’s ideas were quite revolutionary at the time, given the high data rates he predicted were possible
on telephone channels and the notion that coding could reduce error probability without reducing data
rate or causing bandwidth expansion. In time sophisticated modulation and coding technology validated
Shannon’s theory such that on telephone lines today, we achieve data rates very close to Shannon capacity
with very low probability of error. These sophisticated modulation and coding strategies are treated in
Chapters 5 and 8, respectively.

In this chapter we examine the capacity of a single-user wireless channel where the transmitter and/or
receiver have a single antenna. Capacity of single-user systems where the transmitter and receiver have
multiple antennas is treated in Chapter 10 and capacity of multiuser systems is treated in Chapter 14.
We will discuss capacity for channels that are both time-invariant and time-varying. We first look at the
well-known formula for capacity of a time-invariant AWGN channel. We next consider capacity of time-
varying flat-fading channels. Unlike in the AWGN case, capacity of a flat-fading channel is not given
by a single formula, since capacity depends on what is known about the time-varying channel at the
transmitter and/or receiver. Moreover, for different channel information assumptions, there are different
definitions of channel capacity, depending on whether capacity characterizes the maximum rate averaged
over all fading states or the maximum constant rate that can be maintained in all fading states (with or
without some probability of outage).

We will first investigate flat-fading channel capacity when there is no information about the channel
fading (its value or distribution) at either the receiver or the transmitter. This is the “worst-case” scenario
in terms of system design, and the capacity of this channel for most fading distributions (e.g. Rayleigh,
Ricean, and Nakagami fading) is zero under this assumption. We then consider a flat-fading channel where
only the fading distribution is known at the transmitter and receiver. Capacity under this assumption
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is typically very difficult to determine, and is only known in a few special cases. The two most common
assumptions about channel information are that the channel fade level is known at the receiver only (via
receiver estimation) or that the channel fade level is known at both the transmitter and the receiver (via
receiver estimation and transmitter feedback). We will see that the fading channel capacity with channel
side information at both the transmitter and receiver is achieved when the transmitter adapts its power,
data rate, and coding scheme to the channel variation. The optimal power allocation in this case is a
“water-filling” in time, where power and data rate are increased when channel conditions are favorable
and decreased when channel conditions are not favorable.

We will also treat capacity of frequency-selective fading channels. For time-invariant frequency-
selective channels the capacity is known and is achieved with an optimal power allocation that water-fills
over frequency instead of time. The capacity of a time-varying frequency selective fading channels is
unknown in general. However, this channel can be approximated as a set of independent parallel flat-
fading channels, whose capacity is the sum of capacities on each channel with power optimally allocated
among the channels. The capacity of this channel is known and is obtained with an optimal power
allocation that water-fills over both time and frequency.

We will consider only discrete-time systems in this chapter. Most continuous-time systems can be
converted to discrete-time systems via sampling, and then the same capacity results hold. However, care
must be taken in chosing the appropriate sampling rate for this conversion, since time variations in the
channel may increase the sampling rate required to preserve channel capacity [4].

4.2 Capacity in AWGN

Consider a discrete-time additive white Gaussian noise (AWGN) channel with channel input/output
relationship y[i] = x[i] + n[i], where x[i] is the channel input at time i, y[i] is the corresponding channel
output, and n[i] is a white Gaussian noise random process. Assume a channel bandwidth B and transmit
power S. The channel SNR, the power in x[i] divided by the power in n[i], is constant and given by
γ = S/(N0B), where N0 is the power spectral density of the noise. The capacity of this channel is given
by Shannon’s well-known formula [1]:

C = B log2(1 + γ), (4.1)

where the capacity units are bits/second (bps). Shannon’s coding theorem proves that a code exists
that achieves data rates arbitrarily close to capacity with arbitrarily small probability of bit error. The
converse theorem shows that any code with rate R > C has a probability of error bounded away from
zero. The theorems are proved using the concept of mutual information between the input and output
of a channel. For a memoryless time-invariant channel with random input X and random output Y , the
channel’s mutual information is defined as

I(X;Y ) =
∑
x,y

p(x, y) log
(
p(x, y)
p(x)p(y)

)
, (4.2)

where the sum is taken over all possible input and output pairs (x, y). The log function is typically with
respect to base 2, in which case the units of mutual information are bits per second. Shannon proved
that channel capacity equals the mutual information of the channel maximized over all possible input
distributions:

C = max
p(x)

I(X;Y ) = max
p(x)

∑
x,y

p(x, y) log
(
p(x, y)
p(x)p(y)

)
, (4.3)

For the AWGN channel, the maximizing input distribution is Gaussian, which results in the channel
capacity given by (4.1). For channels with memory, mutual information and channel capacity are defined

98

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


relative to input and output sequences Xn and Y n. More details on channel capacity, mutual information,
and the coding theorem and converse can be found in [2, 5, 6].

The proofs of the coding theorem and converse place no constraints on the complexity or delay of
the communication system. Therefore, Shannon capacity is generally used as an upper bound on the
data rates that can be achieved under real system constraints. At the time that Shannon developed his
theory of information, data rates over standard telephone lines were on the order of 100 bps. Thus, it
was believed that Shannon capacity, which predicted speeds of roughly 30 Kbps over the same telephone
lines, was not a very useful bound for real systems. However, breakthroughs in hardware, modulation,
and coding techniques have brought commercial modems of today very close to the speeds predicted
by Shannon in the 1950s. In fact, modems can exceed this 30 Kbps Shannon limit on some telephone
channels, but that is because transmission lines today are of better quality than in Shannon’s day and
thus have a higher received power than that used in Shannon’s initial calculation. On AWGN radio
channels, turbo codes have come within a fraction of a dB of the Shannon capacity limit [7].

Wireless channels typically exhibit flat or frequency-selective fading. In the next two sections we con-
sider capacity of flat-fading and frequency-selective fading channels under different assumptions regarding
what is known about the channel.

Example 4.1: Consider a wireless channel where power falloff with distance follows the formula Pr(d) =
Pt(d0/d)3 for d0 = 10m. Assume the channel has bandwidth B = 30 KHz and AWGN with noise power
spectral density of N0 = 10−9 W/Hz. For a transmit power of 1 W, find the capacity of this channel for
a transmit-receive distance of 100 m and 1 Km.

Solution: The received SNR is γ = Pr(d)/(N0B) = .1 ∗ .13/(10−6 ∗ 30 ∗ 103) = 33 = 15 dB for
d = 100 m and γ = .1 ∗ .013/(10−6 ∗ 30 ∗ 103) = .033 = −15 dB for d = 1000 m. The corre-
sponding capacities are C = B log2(1 + γ) = 30000 log2(1 + 33) = 152.6 Kbps for d = 100m and
C = 30000 log2(1 + .033) = 1.4 Kbps for d = 1000 m. Note the significant decrease in capacity at farther
distances, due to the path loss exponent of 3, which greatly reduces received power as distance increases.

4.3 Capacity of Flat-Fading Channels

4.3.1 Channel and System Model

We assume a discrete-time channel with stationary and ergodic time-varying gain
√
g[i], 0 ≤ g[i], and

AWGN n[i], as shown in Figure 4.1. The channel power gain g[i] follows a given distribution p(g), e.g.
for Rayleigh fading p(g) is exponential. We assume that g[i] is independent of the channel input. The
channel gain g[i] can change at each time i, either as an i.i.d. process or with some correlation over
time. In a block fading channel g[i] is constant over some blocklength T after which time g[i] changes
to a new independent value based on the distribution p(g). Let S denote the average transmit signal
power, N0 denote the noise spectral density of n[i], and B denote the received signal bandwidth. The
instantaneous received signal-to noise ratio (SNR) is then γ[i] = Sg[i]/(N0B), 0 ≤ γ[i] < ∞, and its
expected value over all time is γ = Sg/(N0B). Since S/(N0B) is a constant, the distribution of g[i]
determines the distribution of γ[i] and vice versa.

The system model is also shown in Figure 4.1, where an input message w is sent from the transmitter
to the receiver. The message is encoded into the codeword x, which is transmitted over the time-varying
channel as x[i] at time i. The channel gain g[i], also called the channel side information (CSI), changes
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during the transmission of the codeword.

TRANSMITTER

Encoder

CHANNEL

Decoder

RECEIVER

x[i] y[i]

n[i]g[i]

w ŵ

Figure 4.1: Flat-Fading Channel and System Model.

The capacity of this channel depends on what is known about g[i] at the transmitter and receiver.
We will consider three different scenarios regarding this knowledge:

1. Channel Distribution Information (CDI): The distribution of g[i] is known to the transmitter
and receiver.

2. Receiver CSI: The value of g[i] is known at the receiver at time i, and both the transmitter and
receiver know the distribution of g[i].

3. Transmitter and Receiver CSI: The value of g[i] is known at the transmitter and receiver at
time i, and both the transmitter and receiver know the distribution of g[i].

Transmitter and receiver CSI allows the transmitter to adapt both its power and rate to the channel gain
at time i, and leads to the highest capacity of the three scenarios. Note that since the instantaneous
SNR γ[i] is just g[i] multipled by the constant S/(N0B), known CSI or CDI about g[i] yields the same
information about γ[i]. Capacity for time-varying channels under assumptions other than these three are
discussed in [18, 19].

4.3.2 Channel Distribution Information (CDI) Known

We first consider the case where the channel gain distribution p(g) or, equivalently, the distribution of
SNR p(γ) is known to the transmitter and receiver. For i.i.d. fading the capacity is given by (4.3),
but solving for the capacity-achieving input distribution, i.e. the distribution achieving the maximum
in (4.3), can be quite complicated depending on the fading distribution. Moreover, fading correlation
introduces channel memory, in which case the capacity-achieving input distribution is found by optimized
over input blocks, which makes finding the solution even more difficult. For these reasons, finding the
capacity-achieving input distribution and corresponding capacity of fading channels under CDI remains
an open problem for almost all channel distributions.

The capacity-acheiving input distribution and corresponding fading channel capacity under CDI
is known for two specific models of interest: i.i.d. Rayleigh fading channels and finite state Markov
channels. In i.i.d. Rayleigh fading the channel power gain is exponential and changes independently
with each channel use. The optimal input distribution for this channel was shown in [8] to be discrete
with a finite number of mass points, one of which is located at zero. This optimal distribution and its
corresponding capacity must be found numerically. The lack of closed-form solutions for capacity or
the optimal input distribution is somewhat surprising given the fact that the fading follows the most
common fading distribution and has no correlation structure. For flat-fading channels that are not
necessarily Rayleigh or i.i.d. upper and lower bounds on capacity have been determined in [11], and these
bounds are tight at high SNRs.
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Finite State Markov Channels for fading channels were discussed in Chapter 3.2.4. This model
approximates the fading correlation as a Markov process. While the Markov nature of the fading dictates
that the fading at a given time depends only on fading at the previous time sample, it turns out that the
receiver must decode all past channel outputs jointly with the current output for optimal (i.e. capacity-
achieving) decoding. This significantly complicates capacity analysis. The capacity of Finite State Markov
channels has been derived for i.i.d. inputs in [9, 17] and for general inputs in [10]. Channel capacity
in both cases depends on the limiting distribution of the channel conditioned on all past inputs and
outputs, which can be computed recursively. As with the i.i.d. Rayleigh fading channel, the complexity
of the capacity analysis along with the final result for this relatively simple fading model is very high,
indicating the difficulty of obtaining the capacity and related design insights into channels when only
CDI is available.

4.3.3 Channel Side Information at Receiver

We now consider the case where the CSI g[i] is known at the receiver at time i. Equivalently, γ[i]
is known at the receiver at time i. We also assume that both the transmitter and receiver know the
distribution of g[i]. In this case there are two channel capacity definitions that are relevant to system
design: Shannon capacity, also called ergodic capacity, and capacity with outage. As for the
AWGN channel, Shannon capacity defines the maximum data rate that can be sent over the channel
with asymptotically small error probability. Note that for Shannon capacity the rate transmitted over
the channel is constant: the transmitter cannot adapt its transmission strategy relative to the CSI. Thus,
poor channel states typically reduce Shannon capacity since the transmission strategy must incorporate
the effect of these poor states. An alternate capacity definition for fading channels with receiver CSI is
capacity with outage. Capacity with outage is defined as the maximum rate that can transmitted over a
channel with some outage probability corresponding to the probability that the transmission cannot be
decoded with negligible error probability. The basic premise of capacity with outage is that a high data
rate can be sent over the channel and decoded correctly except when the channel is in deep fading. By
allowing the system to lose some data in the event of deep fades, a higher data rate can be maintained
than if all data must be received correctly regardless of the fading state, as is the case for Shannon
capacity. The probability of outage characterizes the probability of data loss or, equivalently, of deep
fading.

Shannon (Ergodic) Capacity

Shannon capacity of a fading channel with receiver CSI for an average power constraint S can be obtained
from results in [22] as

C =
∫ ∞

0
B log2(1 + γ)p(γ)dγ. (4.4)

Note that this formula is a probabilistic average, i.e. Shannon capacity is equal to Shannon capacity for
an AWGN channel with SNR γ, given by B log2(1 + γ), averaged over the distribution of γ. That is why
Shannon capacity is also called ergodic capacity. However, care must be taken in interpreting (4.4) as an
average. In particular, it is incorrect to interpret (4.4) to mean that this average capacity is achieved by
maintaining a capacity B log2(1+ γ) when the instantaneous SNR is γ, since only the receiver knows the
instantaneous SNR γ[i], and therefore the data rate transmitted over the channel is constant, regardless
of γ. Note, also, the capacity-achieving code must be sufficiently long so that a received codeword is
affected by all possible fading states. This can result in significant delay.
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By Jensen’s inequality,

E[B log2(1 + γ)] =
∫
B log2(1 + γ)p(γ)dγ ≤ B log2(1 + E[γ]) = B log2[1 + γ), (4.5)

where γ is the average SNR on the channel. Thus we see that the Shannon capacity of a fading channel
with receiver CSI only is less than the Shannon capacity of an AWGN channel with the same average
SNR. In other words, fading reduces Shannon capacity when only the receiver has CSI. Moreover, without
transmitter side information, the code design must incorporate the channel correlation statistics, and the
complexity of the maximum likelihood decoder will be proportional to the channel decorrelation time. In
addition, if the receiver CSI is not perfect, capacity can be significantly decreased [19].

Example 4.2: Consider a flat-fading channel with i.i.d. channel gain g[i] which can take on three pos-
sible values: g1 = .025 with probability p1 = .1, g2 = .25 with probability p2 = .5, and g3 = 1 with
probability p3 = .4. The transmit power is 10 mW, the noise spectral density is N0 = 10−9 W/Hz, and
the channel bandwidth is 30 KHz. Assume the receiver has knowledge of the instantaneous value of g[i]
but the transmitter does not. Find the Shannon capacity of this channel and compare with the capacity
of an AWGN channel with the same average SNR.

Solution: The channel has 3 possible received SNRs, γ1 = Ptg1/(N0B) = .01 ∗ (.052)/(30000 ∗ 10( − 9)) =
.8333 = −.79 dB, γ2 = Ptg2/(N0B) = .01/(30000 ∗ 10−9) = 83.333 = 19.2 dB, and γ3 = Ptg3/(N0B) =
.01/(30000 ∗ 10−9) = 333.33 = 25 dB. The probabilities associated with each of these SNR values is
p(γ1) = .1, p(γ2) = .5, and p(γ3) = .4. Thus, the Shannon capacity is given by

C =
∑
i

B log2(1 + γi)p(γi) = 30000(.1 log2(1.8333) + .5 log2(84.333) + .4 log2(334.33)) = 199.26 Kbps.

The average SNR for this channel is γ = .1(.8333) + .5(83.33) + .4(333.33) = 175.08 = 22.43 dB. The
capacity of an AWGN channel with this SNR is C = B log2(1+175.08) = 223.8 Kbps. Note that this rate
is about 25 Kbps larger than that of the flat-fading channel with receiver CSI and the same average SNR.

Capacity with Outage

Capacity with outage applies to slowly-varying channels, where the instantaneous SNR γ is constant over
a large number of transmissions (a transmission burst) and then changes to a new value based on the
fading distribution. With this model, if the channel has received SNR γ during a burst then data can
be sent over the channel at rate B log2(1 + γ) with negligible probability of error1. Since the transmitter
does not know the SNR value γ, it must fix a transmission rate independent of the instantaneous received
SNR.

Capacity with outage allows bits sent over a given transmission burst to be decoded at the end of the
burst with some probability that these bits will be decoded incorrectly. Specifically, the transmitter fixes
a minimum received SNR γmin and encodes for a data rate C = B log2(1 + γmin). The data is correctly
received if the instantaneous received SNR is greater than or equal to γmin [11, 12]. If the received SNR
is below γmin then the bits received over that transmission burst cannot be decoded correctly, and the

1The assumption of constant fading over a large number of transmissions is needed since codes that achieve capacity
require very large blocklengths.
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receiver declares an outage. The probability of outage is thus pout = p(γ < γmin). The average rate
correctly received over many transmission bursts is Co = (1 − pout)B log2(1 + γmin) since data is only
correctly received on 1 − pout transmissions. The value of γmin is typically a design parameter based on
the acceptable outage probability. Capacity with outage is typically characterized by a plot of capacity
versus outage, as shown in Figure 4.2. In this figure we plot the normalized capacity C/B = log2(1+γmin)
as a function of outage probability pout = p(γ < γmin) for a Rayleigh fading channel (γ exponential) with
γ = 20 dB. We see that capacity approaches zero for small outage probability, due to the requirement to
correctly decode bits transmitted under severe fading, and increases dramatically as outage probability
increases. Note, however, that these high capacity values for large outage probabilities have higher
probability of incorrect data reception. The average rate correctly received can be maximized by finding
the γmin that maximizes Co (or, equivalently, the maximizing pout).

10
−4

10
−3

10
−2

10
−1

0

0.5

1

1.5

2

2.5

3

3.5

4

Outage Probability

C
/B

Figure 4.2: Normalized Capacity (C/B) versus Outage Probability.

Example 4.3: Assume the same channel as in the previous example, with a bandwidth of 30 KHz and
three possible received SNRs: γ1 = .8333 with p(γ1) = .1, γ2 = 83.33 with p(γ2) = .5, and γ3 = 333.33
with p(γ3) = .4. Find the capacity versus outage for this channel, and find the average rate correctly
received for outage probabilities pout < .1, pout = .1 and pout = .6.

Solution: For time-varying channels with discrete SNR values the capacity versus outage is a staircase
function. Specifically, for pout < .1 we must decode correctly in all channel states. The minimum received
SNR for pout in this range of values is that of the weakest channel: γmin = γ1, and the correspond-
ing capacity is C = B log2(1 + γmin) = 30000 log2(1.833) = 26.23 Kbps. For .1 ≤ Pout < .6 we can
decode incorrectly when the channel is in the weakest state only. Then γmin = γ2 and the correspond-
ing capacity is C = B log2(1 + γmin) = 30000 log2(84.33) = 191.94 Kbps. For .6 ≤ Pout < 1 we can
decode incorrectly if the channel has received SNR γ1 or γ2. Then γmin = γ3 and the corresponding
capacity is C = B log2(1 + γmin) = 30000 log2(334.33) = 251.55 Kbps. Thus, capacity versus outage has
C = 26.23 Kbps for pout < .1, C = 191.94 Kbps for .1 ≤ pout < .6, and C = 251.55 Kbps for .6 ≤ pout < 1.

103

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


For pout < .1 data transmitted at rates close to capacity C = 26.23 Kbps are always correctly received
since the channel can always support this data rate. For pout = .1 we transmit at rates close to C = 191.94
Kbps, but we can only correctly decode these data when the channel SNR is γ2 or γ3, so the rate correctly
received is (1 − .1)191940 = 172.75 Kbps. For pout = .6 we transmit at rates close to C = 251.55 Kbps
but we can only correctly decode these data when the channel SNR is γ3, so the rate correctly received is
(1− .6)251550 = 125.78 Kbps. It is likely that a good engineering design for this channel would send data
at a rate close to 191.94 Kbps, since it would only be received incorrectly at most 10% of this time and the
data rate would be almost an order of magnitude higher than sending at a rate commensurate with the
worst-case channel capacity. However, 10% retransmission probability is too high for some applications,
in which case the system would be designed for the 26.23 Kbps data rate with no retransmissions. Design
issues regarding acceptable retransmission probability will be discussed in Chapter 14.

4.3.4 Channel Side Information at the Transmitter and Receiver

When both the transmitter and receiver have CSI, the transmitter can adapt its transmission strategy
relative to this CSI, as shown in Figure 4.3. In this case there is no notion of capacity versus outage
where the transmitter sends bits that cannot be decoded, since the transmitter knows the channel and
thus will not send bits unless they can be decoded correctly. In this section we will derive Shannon
capacity assuming optimal power and rate adaptation relative to the CSI, as well as introduce alternate
capacity definitions and their power and rate adaptation strategies.

TRANSMITTER

Encoder

CHANNEL

Decoder

RECEIVER

 Power
Control
   S[i]

x[i]

^

y[i]

n[i]g[i]

g[i]
w

w

Channel
Estimator

Figure 4.3: System Model with Transmitter and Receiver CSI.

Shannon Capacity

We now consider the Shannon capacity when the channel power gain g[i] is known to both the transmitter
and receiver at time i. The Shannon capacity of a time-varying channel with side information about the
channel state at both the transmitter and receiver was originally considered by Wolfowitz for the following
model. Let s[i] be a stationary and ergodic stochastic process representing the channel state, which takes
values on a finite set S of discrete memoryless channels. Let Cs denote the capacity of a particular
channel s ∈ S, and p(s) denote the probability, or fraction of time, that the channel is in state s. The
capacity of this time-varying channel is then given by Theorem 4.6.1 of [20]:

C =
∑
s∈S

Csp(s). (4.6)
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We now apply this formula to the system model in Figure 4.1. We know the capacity of an AWGN
channel with average received SNR γ is Cγ = B log2(1+γ). Let p(γ) = p(γ[i] = γ) denote the probability
distribution of the received SNR. From (4.6) the capacity of the fading channel with transmitter and
receiver side information is thus2

C =
∫ ∞

0
Cγp(γ)dγ =

∫ ∞

0
B log2(1 + γ)p(γ)dγ. (4.7)

We see that without power adaptation, (4.4) and (4.7) are the same, so transmitter side information does
not increase capacity unless power is also adapted.

Let us now allow the transmit power S(γ) to vary with γ, subject to an average power constraint S:∫ ∞

0
S(γ)p(γ)dγ ≤ S. (4.8)

With this additional constraint, we cannot apply (4.7) directly to obtain the capacity. However, we expect
that the capacity with this average power constraint will be the average capacity given by (4.7) with the
power optimally distributed over time. This motivates defining the fading channel capacity with average
power constraint (4.8) as

C = max
S(γ):

∫
S(γ)p(γ)dγ=S

∫ ∞

0
B log2

(
1 +

S(γ)γ
S

)
p(γ)dγ. (4.9)

It is proved in [21] that the capacity given in (4.9) can be achieved, and any rate larger than this
capacity has probability of error bounded away from zero. The main idea behind the proof is a “time
diversity” system with multiplexed input and demultiplexed output, as shown in Figure 4.4. Specifically,
we first quantize the range of fading values to a finite set {γj : 1 ≤ j ≤ N}. For each γj , we design an
encoder/decoder pair for an AWGN channel with SNR γj . The input xj for encoder γj has average power
S(γj) and data rate Rj ≈ Cj , where Cj is the capacity of a time-invariant AWGN channel with received
SNR S(γj)γj/S. These encoder/decoder pairs correspond to a set of input and output ports associated
with each γj . When γ[i] ≈ γj , the corresponding pair of ports are connected through the channel. The
codewords associated with each γj are thus multiplexed together for transmission, and demultiplexed at
the channel output. This effectively reduces the time-varying channel to a set of time-invariant channels
in parallel, where the jth channel only operates when γ[i] ≈ γj . The average rate on the channel is just
the sum of rates associated with each of the γj channels weighted by p(γj), the percentage of time that
the channel SNR equals γj . This yields the average capacity formula (4.9).

To find the optimal power allocation S(γ), we form the Lagrangian

J(S(γ)) =
∫ ∞

0
B log2

(
1 +

γS(γ)
S

)
p(γ)dγ − λ

∫ ∞

0
S(γ)p(γ)dγ. (4.10)

Next we differentiate the Lagrangian and set the derivative equal to zero:

∂J(S(γ))
∂S(γ)

=

[(
1

1 + γS(γ)/S

)
γ

S
− λ

]
p(γ) = 0. (4.11)

Solving for S(γ) with the constraint that S(γ) > 0 yields the optimal power adaptation that maximizes
(4.9) as

S(γ)
S

=

{
1
γ0

− 1
γ γ ≥ γ0

0 γ < γ0
(4.12)

2Wolfowitz’s result was for γ ranging over a finite set, but it can be extended to infinite sets [21].
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Figure 4.4: Multiplexed Coding and Decoding.

for some “cutoff” value γ0. If γ[i] is below this cutoff then no data is transmitted over the ith time
interval, so the channel is only used at time i if γ0 ≤ γ[i] <∞. Substituting (4.12) into (4.9) then yields
the capacity formula:

C =
∫ ∞

γ0
B log2

(
γ

γ0

)
p(γ)dγ. (4.13)

The multiplexing nature of the capacity-achieving coding strategy indicates that (4.13) is achieved with
a time-varying data rate, where the rate corresponding to instantaneous SNR γ is B log2(γ/γ0). Since
γ0 is constant, this means that as the instantaneous SNR increases, the data rate sent over the channel
for that instantaneous SNR also increases. Note that this multiplexing strategy is not the only way to
achieve capacity (4.13): it can also be achieved by adapting the transmit power and sending at a fixed
rate [21]. We will see in Section 4.3.6 that for Rayleigh fading this capacity can exceed that of an AWGN
channel with the same average power, in contrast to the case of receiver CSI only, where fading always
decreases capacity.

Note that the optimal power allocation policy (4.12) only depends on the fading distribution p(γ)
through the cutoff value γ0. This cutoff value is found from the power constraint. Specifically, we first
rearrange the power constraint (4.8) and replace the inequality with equality (since using the maximum
available power will always be optimal) to yield the power constraint

∫ ∞

0

S(γ)
S

p(γ)dγ = 1. (4.14)

Now substituting the optimal power adaptation (4.12) into this expression yields that the cutoff value γ0

must satisfy ∫ ∞

γ0

(
1
γ0

− 1
γ

)
p(γ)dγ = 1. (4.15)

Note that this expression only depends on the distribution p(γ). The value for γ0 cannot be solved for in
closed form for typical continuous pdfs p(γ) and thus must be found numerically [13].

Since γ is time-varying, the maximizing power adaptation policy of (4.12) is a “water-filling” formula
in time, as illustrated in Figure 4.5. This curve shows how much power is allocated to the channel for
instantaneous SNR γ(t) = γ. The water-filling terminology refers to the fact that the line 1/γ sketches
out the bottom of a bowl, and power is poured into the bowl to a constant water level of 1/γ0. The
amount of power allocated for a given γ equals 1/γ0 − 1/γ, the amount of water between the bottom of
the bowl (1/γ) and the constant water line (1/γ0). The intuition behind water-filling is to take advantage
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Figure 4.5: Optimal Power Allocation: Water-Filling.

of good channel conditions: when channel conditions are good (γ large) more power and a higher data
rates is sent over the channel. As channel quality degrades (γ small) less power and rate are sent over the
channel. If the instantaneous channel SNR falls below the cutoff value, the channel is not used. Adaptive
modulation and coding techniques that follow this same principle were developed in [15, 16] and are
discussed in Chapter 9.

Note that the multiplexing argument sketching how capacity (4.9) is achieved applies to any power
adaptation policy, i.e. for any power adaptation policy S(γ) with average power S the capacity

C =
∫ ∞

0
B log2

(
1 +

S(γ)γ
S

)
p(γ)dγ. (4.16)

can be achieved with arbitrarily small error probability. Of course this capacity cannot exceed (4.9), where
power adaptation is optimized to maximize capacity. However, there are scenarios where a suboptimal
power adaptation policy might have desirable properties that outweigh capacity maximization. In the
next two sections we discuss two such suboptimal policies, which result in constant data rate systems, in
contrast to the variable-rate transmission policy that achieves the capacity in (4.9).

Example 4.4: Assume the same channel as in the previous example, with a bandwidth of 30 KHz and
three possible received SNRs: γ1 = .8333 dB with p(γ1) = .1, γ2 = 83.33 with p(γ2) = .5, and γ3 = 333.33
with p(γ3) = .4. Find the ergodic capacity of this channel assuming both transmitter and receiver have
instantaneous CSI.

Solution: We know the optimal power allocation is water-filling, and we need to find the cutoff value γ0

that satisfies the discrete version of (4.15) given by

∑
γi≥γ0

(
1
γ0

− 1
γi

)
p(γi) = 1. (4.17)

We first assume that all channel states are used to obtain γ0, i.e. assume γ0 ≤ mini γi, and see if the
resulting cutoff value is below that of the weakest channel. If not then we have an inconsistency, and
must redo the calculation assuming at least one of the channel states is not used. Applying (4.17) to our
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channel model yields

3∑
i=1

p(γi)
γ0

−
3∑
i=1

p(γi)
γi

= 1 ⇒ 1
γ0

= 1 +
3∑
i=1

p(γi)
γi

= 1 +
(

.1
.8333

+
.5

83.33
+

.4
333.33

)
= 1.13

Solving for γ0 yields γ0 = 1/1.13 = .89 > .8333 = γ1. Since this value of γ0 is greater than the SNR
in the weakest channel, it is inconsistent as the channel should only be used for SNRs above the cutoff
value. Therefore, we now redo the calculation assuming that the weakest state is not used. Then (4.17)
becomes

3∑
i=2

p(γi)
γ0

−
3∑
i=2

p(γi)
γi

= 1 ⇒ .9
γ0

= 1 −
3∑
i=2

p(γi)
γi

= 1 +
(

.5
83.33

+
.4

333.33

)
= .89.

Solving for γ0 yields γ0 = 1/.89 = 1.12. So by assuming the weakest channel with SNR γ1 is not used,
we obtain a consistent value for γ0 with γ1 < γ0 ≤ γ2. The capacity of the channel then becomes

C =
3∑
i=2

B log2(γi/γ0)p(γi) = 30000(.5 log2(83.33/.89) + .4 log2(333.33/.89)) = 200.82 Kbps.

Comparing with the results of the previous example we see that this rate is only slightly higher than for
the case of receiver CSI only, and is still significantly below that of an AWGN channel with the same
average SNR. That is because the average SNR for this channel is relatively high: for low SNR channels
capacity in flat-fading can exceed that of the AWGN channel with the same SNR by taking advantage of
the rare times when the channel is in a very good state.

Zero-Outage Capacity and Channel Inversion

We now consider a suboptimal transmitter adaptation scheme where the transmitter uses the CSI to
maintain a constant received power, i.e., it inverts the channel fading. The channel then appears to
the encoder and decoder as a time-invariant AWGN channel. This power adaptation, called channel
inversion, is given by S(γ)/S = σ/γ, where σ equals the constant received SNR that can be maintained
with the transmit power constraint (4.8). The constant σ thus satisfies

∫
σ
γ p(γ)dγ = 1, so σ = 1/E[1/γ].

Fading channel capacity with channel inversion is just the capacity of an AWGN channel with SNR
σ:

C = B log2 [1 + σ] = B log2

[
1 +

1
E[1/γ]

]
. (4.18)

The capacity-achieving transmission strategy for this capacity uses a fixed-rate encoder and decoder
designed for an AWGN channel with SNR σ. This has the advantage of maintaining a fixed data rate
over the channel regardless of channel conditions. For this reason the channel capacity given in (4.18) is
called zero-outage capacity, since the data rate is fixed under all channel conditions and there is no
channel outage. Note that there exist practical coding techniques that achieve near-capacity data rates
on AWGN channels, so the zero-outage capacity can be approximately achieved in practice.

Zero-outage capacity can exhibit a large data rate reduction relative to Shannon capacity in extreme
fading environments. For example, in Rayleigh fading E[1/γ] is infinite, and thus the zero-outage capacity
given by (4.18) is zero. Channel inversion is common in spread spectrum systems with near-far interference
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imbalances [23]. It is also the simplest scheme to implement, since the encoder and decoder are designed
for an AWGN channel, independent of the fading statistics.

Example 4.5: Assume the same channel as in the previous example, with a bandwidth of 30 KHz and
three possible received SNRs: γ1 = .8333 = with p(γ1) = .1, γ2 = 83.33 with p(γ2) = .5, and γ3 = 333.33
with p(γ3) = .4. Assuming transmitter and receiver CSI, find the zero-outage capacity of this channel.

Solution: The zero-outage capacity is C = B log2[1 + σ], where σ = 1/E[1/γ]. Since

E[1/γ] =
.1

.8333
+

.5
83.33

+
.4

333.33
= .1272,

we have C = 30000 log2(1 + 1/.1272) = 94, 43 Kbps. Note that this is less than half of the Shannon
capacity with optimal water-filling adaptation.

Outage Capacity and Truncated Channel Inversion

The reason zero-outage capacity may be significantly smaller than Shannon capacity on a fading channel
is the requirement to maintain a constant data rate in all fading states. By suspending transmission in
particularly bad fading states (outage channel states), we can maintain a higher constant data rate in the
other states and thereby significantly increase capacity. The outage capacity is defined as the maximum
data rate that can be maintained in all nonoutage channel states times the probability of nonoutage.
Outage capacity is achieved with a truncated channel inversion policy for power adaptation that
only compensates for fading above a certain cutoff fade depth γ0:

S(γ)
S

=

{
σ
γ γ ≥ γ0

0 γ < γ0
, (4.19)

where γ0 is based on the outage probability: pout = p(γ < γ0). Since the channel is only used when
γ ≥ γ0, the power constraint (4.8) yields σ = 1/Eγ0 [1/γ], where

Eγ0 [1/γ]
4
=
∫ ∞

γ0

1
γ
p(γ)dγ. (4.20)

The outage capacity associated with a given outage probability pout and corresponding cutoff γ0 is given
by

C(pout) = B log2

(
1 +

1
Eγ0 [1/γ]

)
p(γ ≥ γ0). (4.21)

We can also obtain the maximum outage capacity by maximizing outage capacity over all possible
γ0:

C = max
γ0

B log2

(
1 +

1
Eγ0 [1/γ]

)
p(γ ≥ γ0). (4.22)

This maximum outage capacity will still be less than Shannon capacity (4.13) since truncated channel
inversion is a suboptimal transmission strategy. However, the transmit and receive strategies associated
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with inversion or truncated inversion may be easier to implement or have lower complexity than the
water-filling schemes associated with Shannon capacity.

Example 4.6: Assume the same channel as in the previous example, with a bandwidth of 30 KHz and
three possible received SNRs: γ1 = .8333 with p(γ1) = .1, γ2 = 83.33 with p(γ2) = .5, and γ3 = 333.33
with p(γ3) = .4. Find the outage capacity of this channel and associated outage probabilities for cutoff
values γ0 = .84 and γ0 = 83.4. Which of these cutoff values yields a larger outage capacity?

Solution: For γ0 = .84 we use the channel when the SNR is γ2 or γ3, so Eγ0 [1/γ] =
∑3
i=2 p(γi)/γi =

.5/83.33+.4/333.33 = .0072. The outage capacity isC = B log2(1+1/Eγ0 [1/γ])p(γ ≥ γ0) = 30000 log2(1+
138.88) ∗ .9 = 192.457. For γ0 = 83.34 we use the channel when the SNR is γ3 only, so Eγ0 [1/γ] =
p(γ3)/γ3 = .4/333.33 = .0012. The capacity is C = B log2(1 + 1/Eγ0 [1/γ])p(γ ≥ γ0) = 30000 log2(1 +
833.33) ∗ .4 = 116.45 Kbps. The outage capacity is larger when the channel is used for SNRs γ2 and γ3.
Even though the SNR γ3 is significantly larger than γ2, the fact that this SNR only occurs 40% of the
time makes it inefficient to only use the channel in this best state.

4.3.5 Capacity with Receiver Diversity

Receiver diversity is a well-known technique to improve the performance of wireless communications in
fading channels. The main advantage of receiver diversity is that it mitigates the fluctuations due to
fading so that the channel appears more like an AWGN channel. More details on receiver diversity and
its performance will be given in Chapter 7. Since receiver diversity mitigates the impact of fading, an
interesting question is whether it also increases the capacity of a fading channel. The capacity calculation
under diversity combining first requires that the distribution of the received SNR p(γ) under the given
diversity combining technique be obtained. Once this distribution is known it can be substituted into any
of the capacity formulas above to obtain the capacity under diversity combining. The specific capacity
formula used depends on the assumptions about channel side information, e.g. for the case of perfect
transmitter and receiver CSI the formula (4.13) would be used. Capacity under both maximal ratio and
selection combining diversity for these different capacity formulas was computed in [26]. It was found
that, as expected, the capacity with perfect transmitter and receiver CSI is bigger than with receiver
CSI only, which in turn is bigger than with channel inversion. The performance gap of these different
formulas decreases as the number of antenna branches increases. This trend is expected, since a large
number of antenna branches makes the channel look like AWGN, for which all of the different capacity
formulas have roughly the same performance.

Recently there has been much research activity on systems with multiple antennas at both the
transmitter and the receiver. The excitement in this area stems from the breakthrough results in [28, 27,
29] indicating that the capacity of a fading channel with multiple inputs and outputs (a MIMO channel)
is n times larger then the channel capacity without multiple antennas, where n = min(nt, nr) for nt the
number of transmit antennas and nr the number of receive antennas. We will discuss capacity of multiple
antenna systems in Chapter 10.

4.3.6 Capacity Comparisons

In this section we compare capacity with transmitter and receiver CSI for different power allocation
policies along with the capacity under receiver CSI only. Figures 4.6, 4.7, and 4.8 show plots of the
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different capacities (4.4), 4.9), (4.18), and (4.22) as a function of average received SNR for log-normal
fading (σ=8 dB standard deviation), Rayleigh fading, and Nakagami fading (with Nakagami parameter
m = 2). We will see in Chapter 7 that Nakagami fading with m = 2 is equivalent to Rayleigh fading
with two-antenna receiver diversity. The capacity in AWGN for the same average power is also shown
for comparison. Note that the capacity in log-normal fading is plotted relative to average dB SNR (µdB),
not average SNR in dB (10 log10 µ): the relation between these values, as given by (2.46) in Chapter 2,
is 10 log10 µ = µdB + σ2

dB ln(10)/20.
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Figure 4.6: Capacity in Log-Normal Shadowing.
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Figure 4.7: Capacity in Rayleigh Fading.

Several observations in this comparison are worth noting. First, we see in the figure that the capacity
of the AWGN channel is larger than that of the fading channel for all cases. However, at low SNRs the
AWGN and fading channel with transmitter and receiver CSI have almost the same capacity. In fact, at
low SNRs (below 0 dB), capacity of the fading channel with transmitter and receiver CSI is larger than
the corresponding AWGN channel capacity. That is because the AWGN channel always has the same low
SNR, thereby limiting it capacity. A fading channel with this same low average SNR will occasionally
have a high SNR, since the distribution has infinite range. Thus, if all power and rate is transmitted over
the channel during these very infrequent high SNR values, the capacity will be larger than on the AWGN
channel with the same low average SNR.

The severity of the fading is indicated by the Nakagami parameter m, where m = 1 for Rayleigh
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Figure 4.8: Capacity in Nakagami Fading (m = 2).

fading and m = ∞ for an AWGN channel without fading. Thus, comparing Figures 4.7 and 4.8 we see
that, as the severity of the fading decreases (Rayleigh to Nakagami with m = 2), the capacity difference
between the various adaptive policies also decreases, and their respective capacities approach that of the
AWGN channel.

The difference between the capacity curves under transmitter and receiver CSI (4.9) and receiver
CSI only (4.4) are negligible in all cases. Recalling that capacity under receiver CSI only (4.4) and
under transmitter and receiver CSI without power adaptation (4.7) are the same, this implies that when
the transmission rate is adapted relative to the channel, adapting the power as well yields a negligible
capacity gain. It also indicates that transmitter adaptation yields a negligible capacity gain relative to
using only receiver side information. We also see that in severe fading conditions (Rayleigh and log-
normal fading), maximum outage capacity exhibits a 1-5 dB rate penalty and zero-outage capacity yields
a very large capacity loss relative to Shannon capacity. However, under mild fading conditions (Nakagami
with m = 2) the Shannon, maximum outage, and zero-outage capacities are within 3 dB of each other
and within 4 dB of the AWGN channel capacity. These differences will further decrease as the fading
diminishes (m→ ∞ for Nakagami fading).

We can view these results as a tradeoff between capacity and complexity. The adaptive policy with
transmitter and receiver side information requires more complexity in the transmitter (and it typically
also requires a feedback path between the receiver and transmitter to obtain the side information).
However, the decoder in the receiver is relatively simple. The nonadaptive policy has a relatively simple
transmission scheme, but its code design must use the channel correlation statistics (often unknown),
and the decoder complexity is proportional to the channel decorrelation time. The channel inversion and
truncated inversion policies use codes designed for AWGN channels, and are therefore the least complex
to implement, but in severe fading conditions they exhibit large capacity losses relative to the other
techniques.

In general, Shannon capacity analysis does not show how to design adaptive or nonadaptive tech-
niques for real systems. Achievable rates for adaptive trellis-coded MQAM have been investigated in
[16], where a simple 4-state trellis code combined with adaptive six-constellation MQAM modulation was
shown to achieve rates within 7 dB of the Shannon capacity (4.9) in Figures 4.6 and 4.7. More complex
codes further close the gap to the Shannon limit of fading channels with transmitter adaptation.
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4.4 Capacity of Frequency-Selective Fading Channels

In this section we consider the Shannon capacity of frequency-selective fading channels. We first consider
the capacity of a time-invariant frequency-selective fading channel. This capacity analysis is similar to
that of a flat-fading channel with the time axis replaced by the frequency axis. Next we discuss the
capacity of time-varying frequency-selective fading channels.

4.4.1 Time-Invariant Channels

Consider a time-invariant channel with frequency response H(f), as shown in Figure 4.9. Assume a
total transmit power constraint S. When the channel is time-invariant it is typically assumed that
H(f) is known at both the transmitter and receiver: capacity of time-invariant channels under different
assumptions of this channel knowledge are discussed in [12].

x[i] y[i]

n[i]

H(f)

Figure 4.9: Time-Invariant Frequency-Selective Fading Channel.

Let us first assume that H(f) is block-fading, so that frequency is divided into subchannels of
bandwidth B, where H(f) = Hj is constant over each block, as shown in Figure 4.10. The frequency-
selective fading channel thus consists of a set of AWGN channels in parallel with SNR |Hj |2Sj/(N0B)
on the jth channel, where Sj is the power allocated to the jth channel in this parallel set, subject to the
power constraint

∑
j Sj ≤ S.

f

H1

H

H
H

H2

3

4

5

H(f)

B

Figure 4.10: Block Frequency-Selective Fading

The capacity of this parallel set of channels is the sum of rates associated with each channel with
power optimally allocated over all channels [5, 6]

C =
∑

maxSj :
∑

j
Sj≤S

B log2

(
1 +

|Hj |2Sj
N0B

)
. (4.23)

Note that this is similar to the capacity and optimal power allocation for a flat-fading channel, with
power and rate changing over frequency in a deterministic way rather than over time in a probabilistic
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way. The optimal power allocation is found via the same Lagrangian technique used in the flat-fading
case, which leads to the water-filling power allocation

Sj
S

=

{
1
γ0

− 1
γj

γj ≥ γ0

0 γj < γ0
(4.24)

for some cutoff value γ0, where γj = |Hj |2S/(N0B) is the SNR associated with the jth channel assuming
it is allocated the entire power budget. This optimal power allocation is illustrated in Figure 4.11. The
cutoff value is obtained by substituting the power adaptation formula into the power constraint, so γ0

must satisfy ∑
j

(
1
γ0

− 1
γj

)
= 1. (4.25)

The capacity then becomes
C =

∑
j:γj≥γ0

B log2(γj/γ0). (4.26)

This capacity is achieved by sending at different rates and powers over each subchannel. Multicarrier
modulation uses the same technique in adaptive loading, as discussed in more detail in Chapter 12.

f

γ 2

γ
1

=

0

1      N  B0

j

j j

S

S
S|H |

Figure 4.11: Water-Filling in Block Frequency-Selective Fading

When H(f) is continuous the capacity under power constraint S is similar to the case of the block-
fading channel, with some mathematical intricacies needed to show that the channel capacity is given by
[5]

C = max
S(f):

∫
S(f)df≤S

∫
log2

(
1 +

|H(f)|2S(f)
N0

)
df. (4.27)

The equation inside the integral can be thought of as the incremental capacity associated with a given
frequency f over the bandwidth df with power allocation S(f). The optimal power allocation over
frequency, S(f), found via the Lagrangian technique applied to (4.27), is again water-filling:

S(f)
S

=

{
1
γ0

− 1
γ(f) γ(f) ≥ γ0

0 γ(f) < γ0
(4.28)

This results in channel capacity

C =
∫
f :γ(f)≥γ0

log2(γ(f)/γ0)df. (4.29)

Example 4.7: Consider a time-invariant block fading frequency-selective fading channel consisting of
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three subchannels of bandwidth B = 1 MHz. The frequency response associated with each channel is
H1 = 1, H2 = 2 and H3 = 3. The transmit power constraint is S = 10 mW and the noise power spectral
density is N0 = 10−9 W/Hz. Find the Shannon capacity of this channel and the optimal power allocation
that achieves this capacity.

Solution: We first first find γj = |Hj|2S/(Nb) for each subchannel, yielding γ1 = 10, γ2 = 40 and γ3 = 90.
The cutoff γ0 must satisfy (4.26). Assuming all subchannels are allocated power, this yields

3
γ0

= 1 +
∑
j

1
γj

= 1.14 ⇒ γ0 = 2.64 < γj ∀j.

Since the cutoff γ0 is less than γj for all j, our assumption that all subchannels are allocated power is
consistent, so this is the correct cutoff value. The corresponding capacity is C =

∑3
j=1B log2(γj/γ0) =

1000000(log2(10/2.64) + log2(40/2.64) + log2(90/2.64)) = 7.61 Mbps.

4.4.2 Time-Varying Channels

The time-varying frequency-selective fading channel is similar to the model shown in Figure 4.9, except
that H(f) = H(f, i), i.e. the channel varies over both frequency and time. It is difficult to determine the
capacity of time-varying frequency-selective fading channels, even when the instantaneous channel H(f, i)
is known perfectly at the transmitter and receiver, due to the random effects of self-interference (ISI). In
the case of transmitter and receiver side information, the optimal adaptation scheme must consider the
effect of the channel on the past sequence of transmitted bits, and how the ISI resulting from these bits
will affect future transmissions [25]. The capacity of time-varying frequency-selective fading channels is
in general unknown, however upper and lower bounds and limiting formulas exist [25, 33].

We will use a simple approximation for channel capacity in time-varying frequency-selective fading.
We take the channel bandwidth B of interest and divide it up into subchannels the size of the channel
coherence bandwidth Bc, as shown in Figure 4.12. We then assume that each of the resulting subchannels
is independent, time-varying, and flat-fading with H(f, i) = Hj [i] on the jth subchannel.

Bc

Channel Bandwidth

B

H(f,t)

Coherence
Bandwidth

H (t)1
2H  (t)

H  (t)
H  (t)

3
4

Figure 4.12: Channel Division in Frequency-Selective Fading

Under this assumption, we can obtain the capacity for each of these flat-fading subchannels based on
the average power Sj that we allocate to each subchannel, subject to a total power constraint S. Since
the channels are independent, the total channel capacity is just equal to the sum of capacities on the
individual narrowband flat-fading channels subject to the total average power constraint, averaged over
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both time and frequency:
C = max

{Sj}:
∑

j
Sj≤S

∑
j

Cj(Sj), (4.30)

where Cj(Sj) is the capacity of the flat-fading subchannel with average power Sj and bandwidth Bc
given by (4.13), (4.4), (4.18), or (4.22) for Shannon capacity under different side information and power
allocation policies. We can also define Cj(Sj) as a capacity versus outage if only the receiver has side
information.

We will focus on Shannon capacity assuming perfect transmitter and receiver channel CSI, since
this upperbounds capacity under any other side information assumptions or suboptimal power allocation
strategies. We know that if we fix the average power per subchannel, the optimal power adaptation follows
a water-filling formula. We also expect that the optimal average power to be allocated to each subchannel
should also follow a water-filling, where more average power is allocated to better subchannels. Thus we
expect that the optimal power allocation is a two-dimensional water-filling in both time and frequency.
We now obtain this optimal two-dimensional water-filling and the corresponding Shannon capacity.

Define γj [i] = |Hj[i]|2S/(N0B) to be the instantaneous SNR on the jth subchannel at time i assuming
the total power S is allocated to that time and frequency. We allow the power Sj(γj) to vary with γj [i].
The Shannon capacity with perfect transmitter and receiver CSI is given by optimizing power adaptation
relative to both time (represented by γj [i] = γj) and frequency (represented by the subchannel index j):

C = max
Sj(γj):

∑
j

∫∞
0

Sj(γj)p(γj)dγj≤S

∑
j

∫ ∞

0
Bc log2

(
1 +

Sj(γj)γj
S

)
p(γj)dγj. (4.31)

To find the optimal power allocation Sj(γj), we form the Lagrangian

J(Sj(γj)) =
∑
j

∫ ∞

0
Bc log2

(
1 +

Sj(γj)γj
S

)
p(γj)dγj − λ

∑
j

∫ ∞

0
Sj(γj)p(γj)dγj . (4.32)

Note that (4.32) is similar to the Lagrangian for the flat-fading channel (4.10) except that the dimension of
frequency has been added by summing over the subchannels. Differentiating the Lagrangian and setting
this derivative equal to zero eliminates all terms except the given subchannel and associated SNR:

∂J(Sj(γj))
∂Sj(γj)

=

[(
1

1 + γjS(γj)/S

)
γj

S
− λ

]
p(γj) = 0. (4.33)

Solving for Sj(γj) yields the same water-filling as the flat fading case:

Sj(γj)
S

=

{
1
γ0

− 1
γj

γj ≥ γ0

0 γj < γ0
, (4.34)

where the cutoff value γ0 is obtained from the total power constraint over both time and frequency:∑
j

∫ ∞

0
Sj(γ)pj(γ)dγj = S. (4.35)

Thus, the optimal power allocation (4.34) is a two-dimensional waterfilling with a common cutoff value
γ0. Dividing the constraint (4.35) by S and substituting in the optimal power allocation (4.34), we get
that γ0 must satisfy ∑

j

∫ ∞

γ0

(
1
γ0

− 1
γj

)
p(γj)dγj = 1. (4.36)
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It is interesting to note that in the two-dimensional water-filling the cutoff value for all subchannels is
the same. This implies that even if the fading distribution or average fade power on the subchannels
is different, all subchannels suspend transmission when the instantaneous SNR falls below the common
cutoff value γ0. Substituting the optimal power allocation (4.35) into the capacity expression (4.31) yields

C =
∑
j

∫ ∞

γ0
Bc log2

(
γj
γ0

)
p(γj)dγj . (4.37)
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Chapter 4 Problems

1. Capacity in AWGN is given by C = B log(1 + S/(N0B)). Find capacity in the limit of infinite
bandwidth B → ∞ as a function of S.

2. Consider an AWGN channel with bandwidth 50 MHz, received power 10 mW, and noise PSD
N0 = 2 × 10−9W/Hz. How much does capacity increase by doubling the received power? How
much does capacity increase by doubling the signal bandwidth?

3. Consider two users simultaneously transmitting to a single receiver in an AWGN channel. This is a
typical scenario in a cellular system with multiple users sending signals to a base station. Assume
the users have equal received power of 10 mW and total noise at the receiver in the bandwidth of
interest of 0.1 mW. The channel bandwidth for each user is 20 MHz.

(a) Suppose that the receiver decodes user 1’s signal first. In this decoding, user 2’s signal acts as
noise (assume it has the same statistics as AWGN). What is the capacity of user 1’s channel
with this additional interference noise?

(b) Suppose that after decoding user 1’s signal, the decoder re-encodes it and subtracts it out of
the received signal. Then in the decoding of user 2’s signal, there is no interference from user
1’s signal. What then is the Shannon capacity of user 2’s channel?

Note: We will see in Chapter 14 that the decoding strategy of successively subtracting out decoded
signals is optimal for achieving Shannon capacity of a multiuser channel with independent trans-
mitters sending to one receiver.

4. Consider a flat-fading channel of bandwidth 20 MHz where for a fixed transmit power S, the
received SNR is one of six values: γ1 = 20 db, γ2 = 15 db, γ3 = 10 dB, γ4 = 5 dB, and γ5 = 0
dB and γ6 = −5 dB. The probability associated with each state is p1 = p6 = .1, p2 = p4 = .15,
p3 = p4 = .25. Assume only the receiver has CSI.

(a) Find the Shannon capacity of this channel.

(b) Plot the capacity versus outage for 0 ≤ pout < 1 and find the maximum average rate that can
be correctly received (maximum Co).

5. Consider a flat-fading channel where for a fixed transmit power S, the received SNR is one of four
values: γ1 = 30 db, γ2 = 20 db, γ3 = 10 dB, and γ4 = 0 dB. The probability associated with each
state is p1 = .2, p2 = .3, p3 = .3, and p4 = .2. Assume both transmitter and receiver have CSI.

(a) Find the optimal power control policy S(i)/S for this channel and its corresponding Shannon
capacity per unit Hertz (C/B).

(b) Find the channel inversion power control policy for this channel and associated zero-outage
capacity per unit bandwidth.

(c) Find the truncated channel inversion power control policy for this channel and associated
outage capacity per unit bandwidth for 3 different outage probabilities: pout = .1, pout = .01,
and pout (and the associated cutoff γ0) equal to the value that achieves maximum outage
capacity.
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6. Consider a cellular system where the power falloff with distance follows the formula Pr(d) =
Pt(d0/d)α, where d0 = 100m and α is a random variable. The distribution for α is p(α = 2) = .4,
p(α = 2.5) = .3, p(α = 3) = .2, and p(α = 4) = .1 Assume a receiver at a distance d = 1000 m from
the transmitter, with an average transmit power constraint of Pt = 100 mW and a receiver noise
power of .1 mW. Assume both transmitter and receiver have CSI.

(a) Compute the distribution of the received SNR.

(b) Derive the optimal power control policy for this channel and its corresponding Shannon ca-
pacity per unit Hertz (C/B).

(c) Determine the zero-outage capacity per unit bandwidth of this channel.

(d) Determine the maximum outage capacity per unit bandwidth of this channel.

7. Assume a Rayleigh fading channel, where the transmitter and receiver have CSI and the distribution
of the fading SNR p(γ) is exponential with mean γ = 10dB. Assume a channel bandwidth of 10
MHz.

(a) Find the cutoff value γ0 and the corresponding power adaptation that achieves Shannon ca-
pacity on this channel.

(b) Compute the Shannon capacity of this channel.

(c) Compare your answer in part (b) with the channel capacity in AWGN with the same average
SNR.

(d) Compare your answer in part (b) with the Shannon capacity where only the receiver knows
γ[i].

(e) Compare your answer in part (b) with the zero-outage capacity and outage capacity with
outage probability .05.

(f) Repeat parts b, c, and d (i.e. obtain the Shannon capacity with perfect transmitter and receiver
side information, in AWGN for the same average power, and with just receiver side information)
for the same fading distribution but with mean γ = −5dB. Describe the circumstances under
which a fading channel has higher capacity than an AWGN channel with the same average
SNR and explain why this behaivor occurs.

8. Time-Varying Interference: This problem illustrates the capacity gains that can be obtained from
interference estimation, and how a malicious jammer can wreak havoc on link performance. Consider
the following interference channel.

x[k]
+ +

y[k]

I[k]

n[k]

The channel has a combination of AWGN n[k] and interference I[k]. We model I[k] as AWGN. The
interferer is on (i.e. the switch is down) with probability .25 and off (i.e. the switch is up) with
probability .75. The average transmit power is 10 mW, the noise spectral density is 10−8 W/Hz, the
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channel bandwidth B is 10 KHz (receiver noise power is NoB), and the interference power (when
on) is 9 mW.

(a) What is the Shannon capacity of the channel if neither transmitter nor receiver know when
the interferer is on?

(b) What is the capacity of the channel if both transmitter and receiver know when the interferer
is on?

(c) Suppose now that the interferer is a malicious jammer with perfect knowledge of x[k] (so the
interferer is no longer modeled as AWGN). Assume that neither transmitter nor receiver have
knowledge of the jammer behavior. Assume also that the jammer is always on and has an
average transmit power of 10 mW. What strategy should the jammer use to minimize the SNR
of the received signal?

9. Consider the malicious interferer from the previous problem. Suppose that the transmitter knows
the interference signal perfectly. Consider two possible transmit strategies under this scenario: the
transmitter can ignore the interference and use all its power for sending its signal, or it can use
some of its power to cancel out the interferer (i.e. transmit the negative of the interference signal).
In the first approach the interferer will degrade capacity by increasing the noise, and in the second
strategy the interferer also degrades capacity since the transmitter sacrifices some power to cancel
out the interference. Which strategy results in higher capacity? Note: there is a third strategy,
where the encoder actually exploits the structure of the interference in its encoding. This strategy
is called dirty paper coding, and is used to achieve Shannon capacity on broadcast channels with
multiple antennas.

10. Show using Lagrangian techniques that the optimal power allocation to maximize the capacity of
a time-invariant block fading channel is given by the water filling formula in (4.24).

11. Consider a time-invariant block fading channel with frequency response

H(f) =




1 fc − 20MHz ≤ f < fc − 10MHz
.5 fc − 10MHz ≤ f < fc
2 fc ≤ f < fc + 10MHz
.25 fc + 10MHz ≤ f < fc + 20MHz
0 else

For a transmit power of 10mW and a noise power spectral density of .001µW per Hertz, find the
optimal power allocation and corresponding Shannon capacity of this channel.

12. Show that the optimal power allocation to maximize the capacity of a time-invariant frequency
selective fading channel is given by the water filling formula in (4.28).

13. Consider a frequency-selective fading channel with total bandwidth 12 MHz and coherence band-
width Bc = 4 MHz. Divide the total bandwidth into 3 subchannels of bandwidth Bc , and as-
sume that each subchannel is a Rayleigh flat-fading channel with independent fading on each
subchannel. Assume the subchannels have average gains E[|H1(t)|2] = 1, E[|H2(t)|2] = .5, and
E[|H3(t)|2] == .125. Assume a total transmit power of 30 mW, and a receiver noise spectral
density of .001µW per Hertz.
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(a) Find the optimal two-dimensional water-filling power adaptation for this channel and the cor-
responding Shannon capacity, assuming both transmitter and receiver know the instantaneous
value of Hj(t), j = 1, 2, 3.

(b) Compare the capacity of part (a) with that obtained by allocating an equal average power of
10 mW to each subchannel and then water-filling on each subchannel relative to this power
allocation.
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Chapter 5

Digital Modulation and Detection

The advances over the last several decades in hardware and digital signal processing have made digital
transceivers much cheaper, faster, and more power-efficient than analog transceivers. More importantly,
digital modulation offers a number of other advantages over analog modulation, including higher data
rates, powerful error correction techniques, resistance to channel impairments, more efficient multiple
access strategies, and better security and privacy. Specifically, high level modulation techniques such
as MQAM allow much higher data rates in digital modulation as compared to analog modulation with
the same signal bandwidth. Advances in coding and coded-modulation applied to digital signaling make
the signal much less susceptible to noise and fading, and equalization or multicarrier techniques can be
used to mitigate ISI. Spread spectrum techniques applied to digital modulation can remove or combine
multipath, resist interference, and detect multiple users simultaneously. Finally, digital modulation is
much easier to encrypt, resulting in a higher level of security and privacy for digital systems. For all
these reasons, systems currently being built or proposed for wireless applications are all digital systems.

Digital modulation and detection consist of transferring information in the form of bits over a com-
munications channel. The bits are binary digits taking on the values of either 1 or 0. These information
bits are derived from the information source, which may be a digital source or an analog source that
has been passed through an A/D converter. Both digital and A/D converted analog sources may be
compressed to obtain the information bit sequence. Digital modulation consists of mapping the informa-
tion bits into an analog signal for transmission over the channel. Detection consists of determining the
original bit sequence based on the signal received over the channel. The main considerations in choosing
a particular digital modulation technique are

• high data rate
• high spectral efficiency (minimum bandwidth occupancy)
• high power efficiency (minimum required transmit power)
• robustness to channel impairments (minimum probability of bit error)
• low power/cost implementation

Often these are conflicting requirements, and the choice of modulation is based on finding the technique
that achieves the best tradeoff between these requirements.

There are two main categories of digital modulation: amplitude/phase modulation and frequency
modulation. Since frequency modulation typically has a constant signal envelope and is generated us-
ing nonlinear techniques, this modulation is also called constant envelope modulation or nonlinear
modulation, and amplitude/phase modulation is also called linear modulation. Linear modulation
generally has better spectral properties than nonlinear modulation, since nonlinear processing leads to
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spectral broadening. However, amplitude and phase modulation embeds the information bits into the
amplitude or phase of the transmitted signal, which is more susceptible to variations from fading and
interference. In addition, amplitude and phase modulation techniques typically require linear amplifiers,
which are more expensive and less power efficient than the nonlinear amplifiers that can be used with
nonlinear modulation. Thus, the general tradeoff of linear versus nonlinear modulation is one of better
spectral efficiency for the former technique and better power efficiency and resistance to channel impair-
ments for the latter technique. Once the modulation technique is determined, the constellation size must
be chosen. Modulations with large constellations have higher data rates for a given signal bandwidth, but
are more susceptible to noise, fading, and hardware imperfections. Finally, the simplest demodulators
require a coherent phase reference with respect to the transmitted signal. This coherent reference may
be difficult to obtain or significantly increase receiver complexity. Thus, modulation techniques that do
no require a coherent phase reference are desirable.

We begin this chapter with a general discussion of signal space concepts. These concepts greatly sim-
plify the design and analysis of modulation and demodulation techniques by mapping infinite-dimensional
signals to a finite-dimensional vector-space. The general principles of signal space analysis will then be
applied to the analysis of amplitude and phase modulation techniques, including pulse amplitude mod-
ulation (PAM), phase-shift keying (PSK), and quadrature amplitude modulation (QAM). We will also
discuss constellation shaping and quadrature offset techniques for these modulations, as well as differen-
tial encoding to avoid the need for a coherent phase reference. We then describe frequency modulation
techniques and their properties, including frequency shift keying (FSK), minimum-shift keying (MSK),
and continuous-phase FSK (CPFSK). Both coherent and noncoherent detection of these techniques will
be discussed. Pulse shaping techniques to improve the spectral properties of the modulated signals will
also be covered, along with issues associated with carrier phase recovery and symbol synchronization.

5.1 Signal Space Analysis

Digital modulation encodes a bit stream of finite length into one of several possible transmitted signals.
Intuitively, the receiver minimizes the probability of detection error by decoding the received signal as
the signal in the set of possible transmitted signals that is “closest” to the one received. Determining the
distance between the transmitted and received signals requires a metric for the distance between signals.
By representing signals as projections onto a set of basis functions, we obtain a one-to-one correspondence
between the set of transmitted signals and their vector representations. Thus, we can analyze signals in
finite-dimensional vector space instead of infinite-dimensional function space, using classical notions of
distance for vector spaces. In this section we show how digitally modulated signals can be represented as
vectors in an appropriately-defined vector space, and how optimal demodulation methods can be obtained
from this vector space representation. This general analysis will then be applied to specific modulation
techniques in later sections.

5.1.1 Signal and System Model

Consider the communication system model shown in Figure 5.1. Every T seconds, the system sends
K = log2M bits of information through the channel for a data rate of R = K/T bits per second (bps).
There are M = 2K possible sequences of K bits, and we say that each bit sequence of length K comprises
a message mi = {b1, . . . ,bK} ∈ M, where M ={m1, . . . ,mM} is the set of all such messages. The
messages have probability pi of being selected for transmission, where

∑M
i=1 pi = 1.

Suppose message mi is to be transmitted over the channel during the time interval [0, T ). Since the
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Figure 5.1: Communication System Model

channel is analog, the message must be embedded into an analog signal for channel transmission. Thus,
each message mi ∈ M is mapped to a unique analog signal si(t) ∈ S = {s1(t), . . . , sM (t)} where si(t) is
defined on the time interval [0, T ) and has energy

Esi =
∫ T

0
s2i (t)dt, i = 1, . . . ,M. (5.1)

Since each message represents a bit sequence, each signal si(t) ∈ S also represents a bit sequence, and
detection of the transmitted signal si(t) at the receiver is equivalent to detection of the transmitted
bit sequence. When messages are sent sequentially, the transmitted signal becomes a sequence of the
corresponding analog signals over each time interval [kT, (k + 1)T ): s(t) =

∑
k si(t− kT ), where si(t) is

the analog signal corresponding to the message mi designated for the transmission interval [kT, (k+1)T ).
This is illustrated in Figure 5.2, where we show the transmitted signal s(t) = s1(t) + s2(t− T ) + s1(t−
2T ) + s1(t − 3T ) corresponding to the string of messages m1,m2,m1,m1 with message mi mapped to
signal si(t).

T0 2T 3T 4T

s (t)
1 1 1

2
s  (t−T)

s (t−2T) s (t−3T)

s(t)

...

m
1

m
1

m
1

m
2

Figure 5.2: Transmitted Signal for a Sequence of Messages

In the model of Figure 5.1, the transmitted signal is sent through an AWGN channel, where a white
Gaussian noise process n(t) of power spectral density N0/2 is added to form the received signal x(t) =
s(t) + n(t). Given x(t) the receiver must determine the best estimate of which si(t) ∈ S was transmitted
during each transmission interval [kT, (k+1)T ). This best estimate for si(t) is mapped to a best estimate
of the message mi(t) ∈ M and the receiver then outputs this best estimate m̂ = {b̂1, . . . , b̂K} ∈ M of
the transmitted bit sequence.

The goal of the receiver design in estimating the transmitted message is to minimize the probability
of message error:

Pe =
M∑
i=1

p(m̂ 6= mi|mi sent)p(mi sent) (5.2)

over each time interval [kT, (k+1)T ). By representing the signals {si(t), i = 1, . . . ,M} geometrically, we
can solve for the optimal receiver design in AWGN based on a minimum distance criterion. Note that, as
we saw in previous chapters, wireless channels typically have a time-varying impulse response in addition
to AWGN. We will consider the effect of an arbitrary channel impulse response on digital modulation
performance in Chapter 6, and methods to combat this performance degradation in Chapters 11-13.
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5.1.2 Geometric Representation of Signals

The basic premise behind a geometrical representation of signals is the notion of a basis set. Specifically,
using a Gram-Schmidt orthogonalization procedure [2, 3], it can be shown that any set of M real energy
signals S = (s1(t), . . . , sM (t)) defined on [0, T ) can be represented as a linear combination of N ≤M real
orthonormal basis functions {φ1(t), . . . , φN (t)}. We say that the basis functions span the signal associated
with the signals in S. Thus, we can write each si(t) ∈ S in terms of its basis function representation
as

si(t) =
N∑
j=1

sijφj(t), 0 ≤ t < T, (5.3)

where

sij =
∫ T

0
si(t)φj(t)dt (5.4)

is a real coefficient representing the projection of si(t) onto the basis function φj(t) and

∫ T

0
φi(t)φj(t)dt =

{
1 i = j
0 i 6= j

. (5.5)

If the signals {si(t)} are linearly independent then N = M , otherwise N < M .
For linear passband modulation techniques, the basis set consists of the sine and cosine functions:

φ1(t) =
√

2
T

cos(2πfct) (5.6)

and

φ2(t) =
√

2
T

sin(2πfct). (5.7)

The
√

2/T factor is needed for normalization so that
∫ T
0 φ2

i (t)dt = 1, i = 1, 2. In fact, with these basis
functions we only get an approximation to (5.5), since∫ T

0
φ2
i (t)dt =

2
T

∫ T

0
.5[1 + cos(2πfct)]dt = 1 +

sin(4πfcT )
4πfcT

. (5.8)

The numerator in the second term of (5.8) is bounded by one and for fcT >> 1 the denominator of this
term is very large. Thus, this second term can be neglected. Similarly,∫ T

0
φi(t)φj(t)dt =

2
T

∫ T

0
.5 sin(2πfct)dt =

− cos(4πfcT )
4πfcT

≈ 0, (5.9)

where the approximation is taken as an equality for fcT >> 1.
With the basis set φ1(t) =

√
2/T cos(2πfct) and φ2(t) =

√
2/T sin(2πfct) the basis function repre-

sentation (5.3) corresponds to the complex baseband representation of si(t) in terms of its in-phase and
quadrature components with an extra factor of

√
2/T :

si(t) = si1

√
2
T

cos(2πfct) + si2

√
2
T

sin(2πfct). (5.10)

Note that the carrier basis functions may have an initial phase offset φ0. The basis set may also include
a baseband pulse-shaping filter g(t) to improve the spectral characteristics of the transmitted signal:

si(t) = si1g(t) cos(2πfct) + si2g(t) sin(2πfct). (5.11)

128

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


In this case the pulse shape g(t) must maintain the orthonormal properties (5.5) of basis functions, i.e.
we must have ∫ T

0
g2(t) cos2(2πfct)dt = 1 (5.12)

and ∫ T

0
g2(t) cos(2πfct) sin(2πfct) = 0, (5.13)

where the equalities may be approximations for fcT >> 1 as in (5.8) and (5.9) above. If the bandwidth
of g(t) satisfies B << fc then g2(t) is roughly constant over Tc, so (5.13) is approximately true since
the sine and cosine functions are orthogonal over one period Tc = 1/fc. The simplest pulse shape that
satisfies (5.12) and (5.13) is the rectangular pulse shape g(t) =

√
2/T , 0 ≤ t < T .

Example 5.1:
Binary phase shift keying (BPSK) modulation transmits the signal s1(t) = α cos(2πfct), 0 ≤ t ≤ T , to
send a 1 bit and the signal s2(t) = −α cos(2πfct), 0 ≤ t ≤ T , to send a 0 bit. Find the set of orthonormal
basis functions and coefficients {sij} for this modulation.

Solution: There is only one basis function for s1(t) and s2(t), φ(t) =
√

2/T cos(2πfct), where the
√

2/T
is needed for normalization. The coefficients are then given by s1 = α

√
T/2 and s2 = −α√T/2.

We denote the coefficients {sij} as a vector si = (si1, . . . , siN ) ∈ RN which is called the signal con-
stellation point corresponding to the signal si(t). The signal constellation consists of all constellation
points {s1, . . . , sM}. Given the basis functions {φ1(t), . . . , φN (t)} there is a one-to-one correspondence
between the transmitted signal si(t) and its constellation point si. Specifically, si(t) can be obtained
from si by (5.3) and si can be obtained from si(t) by (5.4). Thus, it is equivalent to characterize the
transmitted signal by si(t) or si. The representation of si(t) in terms of its constellation point si ∈ RN

is called its signal space representation and the vector space containing the constellation is called the
signal space. A two-dimensional signal space is illustrated in Figure 5.3, where we show si ∈ R2 with
the ith axis of R2 corresponding to the basis function φi(t), i = 1, 2. With this signal space representation
we can analyze the infinite-dimensional functions si(t) as vectors si in finite-dimensional vector space R2.
This greatly simplifies the analysis of the system performance as well as the derivation of the optimal
receiver design. Signal space representations for common modulation techniques like MPSK and MQAM
are two-dimensional (corresponding to the in-phase and quadrature basis functions), and will be given
later in the chapter.

In order to analyze signals via a signal space representation, we require a few definitions for vector
characterization in the vector space RN . The length of a vector in RN is defined as

||si|| =

√√√√ N∑
j=1

s2ij . (5.14)

The distance between two signal constellation points si and sk is thus

||si − sk|| =

√√√√ N∑
j=1

(sij − skj)2 =

√∫ T

0
(si(t) − sk(t))2dt, (5.15)
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Figure 5.3: Signal Space Representation

where the second equality is obtained by writing si(t) and sk(t) in their basis representation (5.3) and
using the orthonormal properties of the basis functions. Finally, the inner product < si(t), sk(t) >
between two real signals si(t) and sk(t) on the interval [0, T ] is

< si(t), sk(t) >=
∫ T

0
si(t)sk(t)dt. (5.16)

Similarly, the inner product < si, sk > between two real vectors is

< sisk >= sTi sk =
∫ T

0
si(t)sk(t)dt =< si(t), sk(t) >, (5.17)

where the equality between the vector inner product and the corresponding signal inner product follows
from the basis representation of the signals (5.3) and the orthonormal property of the basis functions
(5.5). We say that two signals are orthogonal if their inner product is zero. Thus, by (5.5), the basis
functions are orthogonal functions.

5.1.3 Receiver Structure and Sufficient Statistics

Given the channel output x(t) = si(t) + n(t), 0 ≤ t < T , we now investigate the receiver structure to
determine which constellation point si or, equivalently, which message mi, was sent over the time interval
[0, T ). A similar procedure is done for each time interval [kT, (k + 1)T ). We would like to convert the
received signal x(t) over each time interval into a vector, as it allows us to work in finite-dimensional
vector space to estimate the transmitted signal. However, this conversion should not compromise the
estimation accuracy. For this conversion, consider the receiver structure shown in Figure 5.4, where

sij =
∫ T

0
si(t)φj(t)dt, (5.18)

and

nj =
∫ T

0
n(t)φj(t)dt. (5.19)
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We can rewrite x(t) as
N∑
j=1

(sij + nj)φj(t) + nr(t) =
N∑
j=1

xjφj(t) + nr(t), (5.20)

where xj = sij+nj and nr(t) = n(t)−∑N
j=1 njφj(t) denotes the “remainder” noise, which is the component

of the noise orthogonal to the signal space. If we can show that the optimal detection of the transmitted
signal constellation point si given received signal x(t) does not make use of the remainder noise nr(t),
then the receiver can make its estimate m̂ of the transmitted message mi as a function of x = (x1, . . . , xN )
alone. In other words, x = (x1, . . . , xN ) is a sufficient statistic for x(t) in the optimal detection of the
transmitted messages.

1
φ (  )

φ (  )
N

x(t)=s (t)+n(t)
i

 0

T

 0

T

s  +n =xi1 1 1

s   +n  =xiN N N

m̂=mFind i: x   Z i i

t

( )dt

( )dt

t

Figure 5.4: Receiver Structure for Signal Detection in AWGN.

It is intuitively clear that the remainder noise nr(t) should not help in detecting the transmitted
signal si(t) since its projection onto the signal space is zero. This is illustrated in Figure 5.5, where we
assume the signal lies in a space spanned by the basis set (φ1(t), φ2(t)) while the remainder noise lies in
a space spanned by the basis function φnr(t), which is orthogonal to φ1(t) and φ2(t). The vector space
in the figure shows the projection of the received signal onto each of these basis functions. Specifically,
the remainder noise in Figure 5.5 is represented by nr, where nr(t) = nrφnr(t). The received signal is
represented by x + nr. From the figure it appears that projecting x + nr onto x will not compromise
the detection of which constellation si was transmitted, since nr lies in a space orthogonal to the space
where si lies. We now proceed to show mathematically why this intuition is correct.

s1

s

s
s4

3

2

1φ (t)

φ (t)2

φ (t)nrx+n r

x

Figure 5.5: Projection of Received Signal onto Received Vector x.

Let us first examine the distribution of x. Since n(t) is a Gaussian random process, if we condition
on the transmitted signal si(t) then the channel output x(t) = si(t) + n(t) is also a Gaussian random
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process and x = (x1, . . . , xN ) is a Gaussian random vector. Recall that xj = sij + nj . Thus, conditioned
on a transmitted constellation si, we have that

µxj |si
= E[xj |si] = E[sij + nj |sij] = sij (5.21)

since n(t) has zero mean, and

σxj |si
= E[xj − µxj |si

]2 = E[= sij + nj − sij |sij]2 = E[n2
j ]. (5.22)

Moreover,

Cov[xjxk|si] = E[(xj − µxj )(xk − µxk
)|si]

= E[njnk]

= E

[∫ T

0
n(t)φj(t)dt[

∫ T

0
n(τ)φk(τ)dτ

]

=
∫ T

0

∫ T

0
E[n(t)n(τ)]φj(t)φk(τ)dtdτ

=
∫ T

0

∫ T

0

N0

2
δ(t− τ)φj(t)φk(τ)dtdτ

=
N0

2

∫ T

0
φj(t)φk(t)dt

=

{
N0/2 i = j
0 i 6= j

(5.23)

where the last equality follows from the orthogonality of the basis functions. Thus, conditioned on
the transmitted constellation si, the xjs are uncorrelated and, since they are Gaussian, they are also
independent. Moreover E[n2

j ] = N0/2.
We have shown that, conditioned on the transmitted constellation si, xj is a Gauss-distributed

random variable that is independent of xk, k 6= j and has mean sij and variance N0/2. Thus, the
conditional distribution of x is given by

p(x|si sent) =
N∏
j=1

p(xj |mi) =
1

(πN0)N/2
exp


− 1

N0

N∑
j=1

(xj − sij)2

 . (5.24)

It is also straightforward to show that E[xjnr(t)|si] = 0 for any t, 0 ≤ t < T . Thus, since xj conditioned
on si and nr(t) are Gaussian and uncorrelated, they are independent. Also, since the transmitted signal
is independent of the noise, sij is independent of the process nr(t).

We now discuss the receiver design criterion and show it is not affected by discarding nr(t). The
goal of the receiver design is to minimize the probability of error in detecting the transmitted message
mi given received signal x(t). To minimize Pe = p(m̂ 6= mi|x(t)) = 1 − p(m̂ = mi|x(t)) we maximize
p(m̂ = mi|x(t)). Therefore, the receiver output m̂ given received signal x(t) should correspond to the
message mi that maximizes p(mi sent|x(t)). Since there is a one-to-one mapping between messages
and signal constellation points, this is equivalent to maximizing p(si sent|x(t)). Recalling that x(t) is
completely described by x = (x1, . . . , xN ) and nr(t), we have

p(si sent|x(t)) = p((si1, . . . , siN ) sent|(x1, . . . , xN , nr(t))

132

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


=
p((si1, . . . , siN ) sent, (x1, . . . , xN ), nr(t))

p((x1, . . . , xN ), nr(t))

=
p((si1, . . . , siN ) sent, (x1, . . . , xN ))p(nr(t)

p(x1, . . . , xN )p(nr(t))
= p((si1, . . . , siN ) sent|(x1, . . . , xN )), (5.25)

(5.26)

where the third equality follows from the fact that the nr(t) is independent of both (x1, . . . , xN ) and of
(si1, . . . , siN ). This analysis shows that (x1, . . . , xN ) is a sufficient statistic for x(t) in detecting mi, in
the sense that the probability of error is minimized by using only this sufficient statistic to estimate the
transmitted signal and discarding the remainder noise. Since x is a sufficient statistic for the received
signal x(t), we call x the received vector associated with x(t).

5.1.4 Decision Regions and the Maximum Likelihood Decision Criterion

We saw in the previous section that the optimal receiver minimizes error probability by selecting the
detector output m̂ that maximizes 1 − Pe = p(m̂ sent|x). In other words, given a received vector x,
the optimal receiver selects m̂ = mi corresponding to the constellation si that satisfies p(si sent|x) >
p(sj sent|x)∀j 6= i. Let us define a set of decisions regions (Z1, . . . , ZM ) that are subsets of the signal
space RN by

Zi = (x : p(si sent|x) > p(sj sent|x)∀j 6= i). (5.27)

Clearly these regions do not overlap. Moreover, they partition the signal space assuming there is no
x ∈ RN for which p(si sent|x) = p(sj sent|x). If such points exist then the signal space is partitioned with
decision regions by arbitrarily assigning such points to either decision region Zi or Zj . Once the signal
space has been partitioned by decision regions, then for a received vector x ∈ Zi the optimal receiver
outputs the message estimate m̂ = mi. Thus, the receiver processing consists of computing the received
vector x from x(t), finding which decision region Zi contains x, and outputting the corresponding message
mi. This process is illustrated in Figure 5.6, where we show a two-dimensional signal space with four
decision regions Z1, . . . , Z4 corresponding to four constellations s1, . . . , s4. The received vector x lies in
region Z1, so the receiver will output the message m1 as the best message estimate given received vector
x.

We now examine the decision regions in more detail. We will abbreviate p(si sent|x received) as
p(si|x) and p(si sent) as p(si). By Bayes rule,

p(si|x) =
p(x|si)p(si)

p(x)
. (5.28)

To minimize error probability, the receiver output m̂ = mi corresponds to the constellation si that
maximizes p(si|x), i.e. si must satisfy

arg max
si

p(x|si)p(si)
p(x)

= arg max
si

p(x|si)p(si), i = 1, . . . ,M, (5.29)

where the second equality follows from the fact that p(x) is not a function of si. Assuming equally
likely messages (p(si) = p(1/M)), the receiver output m̂ = mi corresponding to the constellation si that
satisfies

arg max
si

p(x|si), i = 1, . . . ,M. (5.30)
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Figure 5.6: Decision Regions

Let us define the likelihood function associated with our receiver as

L(si) = p(x|si). (5.31)

Given a received vector x, a maximum likelihood receiver outputs m̂ = mi corresponding to the
constellation si that maximizes L(si). Since the log function is increasing in its argument, maximizing
L(si) is equivalent to maximizing the log likelihood function, defined as l(si) = logL(si). Using (5.24)
for L(si) = p(x|si) then yields

l(si) = − 1
N0

N∑
j=1

(xj − sij)2 = ||x− si||2. (5.32)

Thus, the log likelihood function l(si) depends only on the distance between the received vector x and
the constellation point si.

The maximum likelihood receiver is implemented using the structure shown in Figure 5.4. First x
is computed from x(t), and then the signal constellation closest to x is determined as the constellation
point si satisfying

arg max
si

− 1
N0

N∑
j=1

(xj − sij)2 = arg max
si

− 1
N0

||x− si||2. (5.33)

This si is determined from the decision region Zi that contains x , where Zi is defined by

Zi = (x : ||x− si|| < ||x− sj || ∀j = 1, . . . ,M, j 6= i) i = 1, . . . ,M. (5.34)

Finally, the estimated constellation si is mapped to the estimated message m̂, which is output from the
receiver. This result is intuitively satisfying, since the receiver decides that the transmitted constellation
point is the one closest to the received vector. This maximum likelihood receiver structure is very
simple to implement since the decision criterion depends only on vector distances. This structure also
minimizes the probability of message error at the receiver output when the transmitted messages are
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equally likely. However, if the messages and corresponding signal constellatations are not equally likely
then the maximum likelihood receiver does not minimize error probability: to minimize error probability
the decision regions Zi must be modified to take into account the message probabilities, as indicated in
(5.28).

An alternate receiver structure is shown in Figure 5.7. This structure makes use of a bank of filters
matched to each of the different basis function. We call a filter with impulse response ψ(t) = φ(T −t), 0 ≤
t ≤ T the matched filter to the signal φ(t), so Figure 5.7 is also called a matched filter receiver. It
can be shown that if a given input signal is passed through a filter matched to that signal, the output
SNR is maximized. One can also show that the sampled matched filter outputs (x1, . . . , xn) in Figure 5.7
are the same as the (x1, . . . , xn) in Figure 5.4, so the two receivers are equivalent.

Example 5.2:
For BPSK modulation, find decision regions Z1 and Z2 corresponding to constellations s1 = A and
s2 = −A.

Solution: The signal space is one-dimensional, so x ∈ R. By (5.34) the decision region Z1 ⊂ R is defined
by

Z1 = (x : ||x−A|| < ||x− (−A)||) = (x : x > 0).

Thus, Z1 contains all positive numbers on the real line. Similarly

Z2 = (x : ||x− (−A)|| < ||x−A||) = (x : x < 0).

So Z2 contains all negative numbers on the real line. For x = 0 the distance is the same to s1 = A and
s2 = −A so we arbitrarily assign x = 0 to Z2.

1

x(t)=s (t)+n(t)
i

1

^

φ (      )
x

xN

N
φ  (      )

m=mFind i: x   Z i i

T−t 

T−t 

T

T

Figure 5.7: Matched Filter Receiver Structure.

5.1.5 Error Probability and the Union Bound

We now analyze the error probability associated with the maximum likelihood receiver structure. For
equally likely messages p(mi sent) = 1/M we have

Pe =
M∑
i=1

p(x 6∈ Zi|mi sent)p(mi sent)
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=
1
M

M∑
i=1

p(x 6∈ Zi|mi sent)

= 1 − 1
M

M∑
i=1

p(x ∈ Zi|mi sent)

= 1 − 1
M

M∑
i=1

∫
Zi

p(x|mi)dx

= 1 − 1
M

M∑
i=1

∫
Zi

p(x = si + n|si)dn.

= 1 − 1
M

M∑
i=1

∫
Zi−si

p(n)dn (5.35)

The integrals in (5.35) are over the N -dimensional subset Zi ⊂ RN . We illustrate this error probability
calculation in Figure 5.8, where the constellation points s1, . . . , s8 are equally spaced around a circle
with minimum separation dmin. The probability of correct reception assuming the first symbol is sent,
p(x ∈ Z1|m1 sent), corresponds to the probability p(x = s1 + n|s1) that when noise is added to the
transmitted constellation s1, the resulting vector x = s1 + n remains in the Z1 region shown by the
shaded area.
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Figure 5.8: Error Probability Integral and Its Rotational/Shift Invariance

Figure 5.8 also indicates that the error probability is invariant to an angle rotation or axis shift of
the signal constellation. The right side of the figure indicates a phase rotation of θ and axis shift of P
relative to the constellation on the left side. Thus, s′i = siejθ + P . The rotational invariance follows
because the noise vector n = (n1, . . . , nN ) has components that are i.i.d Gaussian random variables with
zero mean, thus the polar representation n = rejθ has θ uniformly distributed, so the noise statistics
are invariant to a phase rotation. The shift invariance follows from the fact that if the constellation is
shifted by some value P ∈ RN , the decision regions defined by (5.34) are also shifted by P . Let (si, Zi)
denote a constellation point and corresponding decision region before the shift and (s′i, Z ′

i) denote the
corresponding constellation point and decision region after the shift. It is then straightforward to show
that p(x = si + n ∈ Zi|si) = p(x′ = s′i + n ∈ Z ′

i|s′i). Thus, the error probability after an axis shift of the
constellation points will remain unchanged.

While (5.35) gives an exact solution to the probability of error, we cannot solve for this error prob-
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ability in closed form. Therefore, we now investigate the union bound on error probability, which
yields a closed form expression that is a function of the distance between signal constellation points. Let
Aik denote the event that ||x − sk|| < ||x − si|| given that the constellation point si was sent. If the
event Aik occurs, then the constellation will be decoded in error since the transmitted constellation si
is not the closest constellation point to the received vector x. However, event Aik does not necessar-
ily imply that sk will be decoded instead of si, since there may be another constellation point sl with
||x − sl|| < ||x − sk|| < ||x − si||. The constellation is decoded correctly if ||x − si|| < ||x − sk|| ∀k 6= i.
Thus

Pe(mi sent) = p


 M⋃

k=1

k 6=i

Aik


 ≤

M∑
k=1

k 6=i

p (Aik) , (5.36)

where the inequality follows from the union bound on probability.
Let us now consider p(Aik) more closely. We have

p(Aik) = p(||sk − x|| < ||si − x|| |si sent)
= p(||sk − (si + n)|| < ||si − (si + n)||)
= p(||n + si − sk|| < ||n||), (5.37)

i.e. the probability of error equals the probability that the noise n is closer to the vector si − sk than to
the origin. Recall that the noise has a mean of zero, so it is generally close to the origin. This probability
does not depend on the entire noise component n: it only depends on the projection of n onto the line
connecting the origin and the point si − sj , as shown in Figure 5.9. Given the properties of n, the
projection of n onto this one-dimensional line is a one dimensional Gaussian random variable n with
mean and variance N0/2. The event Aik occurs if n is closer to si − sk than to zero, i.e. if n > dik/2,
where dik = ||si − sk|| equals the distances between constellation points si and sk. Thus,

p(Aik) = p(n > dik/2) =
∫ ∞

dik/2

1√
πNo

exp

[
−v2

N0

]
dv = Q

(
dij√
2N0

)
. (5.38)

0

n
i

d

s −s

n

ik

k

Figure 5.9: Noise Projecion

Substituting into (5.36) we get

Pe(mi sent) ≤
M∑

k=1

k 6=i

Q

(
dij√
2N0

)
. (5.39)
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Summing over all possible messages yields the union bound

Pe =
M∑
i=1

p(mi)Pe(mi sent) ≤ 1
M

M∑
i=1

M∑
k=1

k 6=i

Q

(
dij√
2N0

)
, (5.40)

where the Q function, Q(z), is defined as the probability that a Gaussian random variable x with mean
0 and variance 1 is bigger than z:

Q(z) = p(x > z) =
∫ ∞

z

1√
2π
e−x

2/2dx. (5.41)

The Q function cannot be solved for in closed form. It can be obtained from the complementary error
function as

Q(z) =
1
2
erfc

(
z√
2

)
. (5.42)

Defining the minimum distance of the constellation as dmin = mini,k dik, we can simplify (5.40) with the
looser bound

Pe ≤ (M − 1)Q
(
dmin√
2N0

)
. (5.43)

Using a well-known bound for the Q function yields a closed-form bound

Pe ≤ M − 1√
π

exp

[
−d2

min

4N0

]
. (5.44)

Finally, Pe is sometimes approximated as the probability of error associated with constellations at the
minimum distance dmin multiplied by the number of neighbors at this distance Mdmin

:

Pe ≈Mdmin
Q

(
dmin√
2N0

)
. (5.45)

This approximation is called the nearest neighbor approximation to Ps. When different constellation
points have a different number of nearest neighbors or different minimum distances, the bound can
be averaged over the bound associated with each constellation point. Note that the nearest neighbor
approximation will always be less than the loose bound (5.43) since M ≥Mdmin

, and will also be slightly
less than the union bound (5.40), since this approximation does not include the error associated with
constellations farther apart than the minimum distance. However, the nearest neighbor approximation
is quite close to the exact probability of symbol error at high SNRs, since for x and y large with x > y,
Q(x) << Q(y) due to the exponential falloff of the Gaussian distribution in (5.41). This indicates
that the probability of mistaking a constellation point for another point that is not one of its nearest
neighbors is negligible at high SNRs. A rigorous derivation for (5.45) is made in [4] and also referenced
in [5]. Moreover, [4] indicates that (5.45) captures the performance degradation due to imperfect receiver
conditions such as slow carrier drift with an appropriate adjustment of the constants. The appeal of the
nearest neighbor bound is that it depends only on the minimum distance in the signal constellation and
the number of nearest neighbors for points in the constellation.

Example 5.3:
Consider a signal constellation in R2 defined by s1 = (A, 0), s2 = (0, A), s3 = (−A, 0) and s4 = (0, A).
Assume A/

√
N0 = 4. Find the minimum distance and the union bound (5.40), looser bound (5.43), closed
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form bound (5.44), and nearest neighbor approximation (5.45) on Pe for this constellation set.

Solution: The constellation is as depicted in Figure 5.3 with the radius of the circle equal to A. By
symmetry, we need only consider the error probability associated with one of the constellation points,
since it will be the same for the others. We focus on the error associated with transmitting constellation
point s1. The minimum distance to this constellation point is easily computed as dmin = d12 = d23 =
d34 = d14 =

√
A2 +A2 =

√
2A2. The distance to the other constellation points are d13 = d24 = 2A. By

symmetry, Pe(mi sent) = Pe(mj sent), j 6= i, so the union bound simplifies to

Pe ≤
4∑
j=2

Q

(
d1j√
2N0

)
= 2Q(A/

√
N0) +Q(

√
2A/

√
N0) = 2Q(4) +Q(

√
32) = 3.1679 ∗ 10−5.

The looser bound yields
Pe ≤ 3Q(4) = 9.5014 ∗ 10−5

which is roughly a factor of 3 looser than the union bound. The closed-form bound yields

Pe ≤ 3
π

exp

[
−.5A2

N0

]
. = 3.2034 ∗ 10−4,

which differs from the union bound by about an order of magnitude. Finally, the nearest neighbor
approximation yields

Pe ≈ 2Q(4) = 3.1671 ∗ 10−5,

which, as expected, is approximately equal to the union bound.

Note that for binary modulation where M = 2, there is only one way to make an error and dmin is
the distance between the two signal constellation points, so the bound (5.43) is exact:

Pb = Q

(
dmin√
2N0

)
. (5.46)

The minimum distance squared in (5.44) and (5.46) is typically proportional to the SNR of the received
signal, as discussed in Chapter 6. Thus, error probability is reduced by increasing the received signal
power.

Recall that Pe is the probability of a symbol (message) error: Pe = p(m̂ 6= mi|mi sent), where mi

corresponds to a message with log2M bits. However, system designers are typically more interested in the
bit error probability than in the symbol error probability, since bit errors drive the performance of higher
layer networking protocols and end-to-end performance. Thus, we would like to design the mapping of
the log2M possible bit sequences to messages mi, i = 1, . . . ,M so that a symbol error associated with an
adjacent decision region, which is the most likely way to make an error, corresponds to only one bit error.
With such a mapping, assuming that mistaking a signal constellation for a constellation other than its
nearest neighbors has a very low probability, we can make the approximation

Pb ≈ Pe
log2M

. (5.47)

The most common form of mapping with the property is called Gray coding, which is discussed in more
detail in Section 5.3. Signal space concepts are applicable to any modulation where bits are encoded
as one of several possible analog signals, including the amplitude, phase, and frequency modulations
discussed below.
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5.2 Passband Modulation Principles

The basic principle of passband digital modulation is to encode an information bit stream into a carrier
signal which is then transmitted over a communications channel. Demodulation is the process of extract-
ing this information bit stream from the received signal. Corruption of the transmitted signal by the
channel can lead to bit errors in the demodulation process. The goal of modulation is to send bits at a
high data rate while minimizing the probability of data corruption.

In general, modulated carrier signals encode information in the amplitude α(t), frequency f(t), or
phase θ(t) of a carrier signal. Thus, the modulated signal can be represented as

s(t) = α(t) cos[2π(fc + f(t))t+ θ(t) + φ0] = α(t) cos(2πfct+ φ(t) + φ0), (5.48)

where φ(t) = 2πf(t)t + θ(t) and φ0 is the phase offset of the carrier. This representation combines
frequency and phase modulation into angle modulation.

We can rewrite the right-hand side of (5.48) in terms of its in-phase and quadrature components as:

s(t) = α(t) cosφ(t) cos(2πfct+φ0)−α(t) sinφ(t) sin(2πfct+φ0) = sI(t) cos(2πfct+φ0)−sQ(t) sin(2πfct+φ0),
(5.49)

where sI(t) = α(t) cosφ(t) is called the in-phase component of s(t) and sQ(t) = α(t) sinφ(t) is called its
quadrature component. We can also write s(t) in its complex baseband representation as

s(t) = <{u(t)ej(2πfct+φ0)}, (5.50)

where u(t) = sI(t) + jsQ(t). This representation, described in more detail in Appendix A, is useful since
receivers typically process the in-phase and quadrature signal components separately.

5.3 Amplitude and Phase Modulation

In amplitude and phase modulation the information bit stream is encoded in the amplitude and/or phase
of the transmitted signal. Specifically, over a time interval of Ts, K = log2M bits are encoded into
the amplitude and/or phase of the transmitted signal s(t), 0 ≤ t < Ts. The transmitted signal over
this period s(t) = sI(t) cos(2πfct + φ0) − sQ(t) sin(2πfct + φ0) can be written in terms of its signal
space representation as s(t) = si1φ1(t) + si2φ2(t) with basis functions φ1(t) = g(t) cos(2πfct + φ0) and
φ2(t) = −g(t) sin(2πfct + φ0), where g(t) is a shaping pulse. To send the ith message over the time
interval [kT, (k + 1)T ), we set sI(t) = si1g(t) and sQ(t) = si2g(t). These in-phase and quadrature signal
components are baseband signals with spectral characteristics determined by the pulse shape g(t). In
particular, their bandwidth B equals the bandwidth of g(t), and the transmitted signal s(t) is a passband
signal with center frequency fc and passband bandwidth 2B. In practice we take B = Kg/Ts where Kg

depends on the pulse shape: for rectangular pulses Kg = .5 and for raised cosine pulses .5 ≤ Kg ≤ 1, as
discussed in Section 5.5. Thus, for rectangular pulses the bandwidth of g(t) is .5/Ts and the bandwidth
of s(t) is 1/Ts. Since the pulse shape g(t) is fixed, the signal constellation for amplitude and phase
modulation is defined based on the constellation point: (si1, si2) ∈ R2, i = 1, . . . ,M . The complex
baseband representation of s(t) is

s(t) = <{u(t)ej(2πfct+φ0)} (5.51)

where u(t) = sI(t) + jsQ(t) = (si1 + jsi2)g(t). The constellation point si = (si1, si2) is called the symbol
associated with the log2M bits and Ts is called the symbol time. The bit rate for this modulation is
K bits per symbol or R = log2M/Ts bits per second.

There are three main types of amplitude/phase modulation:
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• Pulse Amplitude Modulation (MPAM): information encoded in amplitude only.

• Phase Shift Keying (MPSK): information encoded in phase only.

• Quadrature Amplitude Modulation (MQAM): information encoded in both amplitude and phase.

The number of bits per symbol K = log2M , signal constellation (si1, si2) ∈ R2, i = 1, . . . ,M , and choice
of pulse shape g(t) determines the digital modulation design. The pulse shape g(t) is designed to improve
spectral efficiency and combat ISI, as discussed in Section 5.5 below.

Amplitude and phase modulation over a given symbol period can be generated using the modulator
structure shown in Figure 5.10. Note that the basis functions in this figure have an arbitrary phase φ0

associated with the transmit oscillator. Demodulation over each symbol period is performed using the
demodulation structure of Figure 5.11, which is equivalent to the structure of Figure 5.7 for φ1(t) =
g(t) cos(2πfct + φ) and φ2(t) = −g(t) sin(2πfct + φ). Typically the receiver includes some additional
circuitry for carrier phase recovery that matches the carrier phase φ at the receiver to the carrier
phase φ0 at the transmitter1, which is called coherent detection. If φ − φ0 = ∆φ 6= 0 then the
in-phase branch will have an unwanted term associated with the quadrature branch and vice versa, i.e.
x1 = si1 cos(∆φ)+si2 sin(∆φ)+n1 and x2 = si1 sin(∆φ)+si2 cos(∆φ)+n2, which can result in significant
performance degradation. The receiver structure also assumes that the sampling function every Ts seconds
is synchronized to the start of the symbol period, which is called synchronization or timing recovery.
Receiver synchronization and carrier phase recovery are complex receiver operations that can be highly
challenging in wireless environments. These operations are discussed in more detail in Section 5.6. We
will assume perfect carrier recovery in our discussion of MPAM, MPSK and MQAM, and therefore set
φ = φ0 = 0 for their analysis.

π
2

Shaping
  Filter
   g(t)

Shaping
  Filter
   g(t)

s(t)

In−Phase branch

Quadrature Branch

i1

i2s  

s  i1s  g(t)

s  g(t)i2

c−sin(2   f  t+   )

cos(2   f  t+   )cπ φ
0

cos(2   f  t+   )cπ φ
0

π φ
0

Figure 5.10: Amplitude/Phase Modulator.

1In fact, an additional phase term of −2πfcτ will result from a propagation delay of τ in the channel. Thus, coherent
detection requires the receiver phase φ = φ0 − 2πfcτ , as discussed in more detail in Section 5.6.
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Figure 5.11: Amplitude/Phase Demodulator (Coherent: φ = φ0).

5.3.1 Pulse Amplitude Modulation (MPAM)

We will start by looking at the simplest form of linear modulation, one-dimensional MPAM, which has no
quadrature component (si2 = 0). For MPAM all of the information is encoded into the signal amplitude
Ai. The transmitted signal over one symbol time is given by

si(t) = <{Aig(t)ej2πfct} = Aig(t) cos(2πfct), 0 ≤ t ≤ Ts >> 1/fc, (5.52)

where Ai = (2i−1−M)d, i = 1, 2, . . . ,M defines the signal constellation, parameterized by the distance d
which is typically a function of the signal energy, and g(t) is the pulse shape satisfying (5.12) and (5.13).
The minimum distance between constellation points is dmin = mini,j |Ai − Aj | = 2d. The amplitude of
the transmitted signal takes on M different values, which implies that each pulse conveys log2M = K
bits per symbol time Ts.

Over each symbol period the MPAM signal associated with the ith constellation has energy

Esi =
∫ Ts

0
s2i (t)dt =

∫ Ts

0
A2
i g

2(t) cos2(2πfct)dt = A2
i (5.53)

since the pulse shape must satisfy (5.12)2. Note that the energy is not the same for each signal si(t), i =
1, . . . ,M . Assuming equally likely symbols, the average energy is

Es =
1
M

M∑
i=1

A2
i . (5.54)

The constellation mapping is usually done by Gray encoding, where the messages associated with
signal amplitudes that are adjacent to each other differ by one bit value, as illustrated in Figure 5.12.
With this encoding method, if noise causes the demodulation process to mistake one symbol for an
adjacent one (the most likely type of error), this results in only a single bit error in the sequence of K
bits.

Example 5.4:
2Recall from (5.8) that (5.12) and therefore (5.53) are not necessarily exact equalities, but very good approximations for

fcTs >> 1.
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Figure 5.12: Gray Encoding for MPAM.

For g(t) =
√

2/Ts, 0 ≤ t < Ts a rectangular pulse shape, find the average energy of 4PAM modulation.

Solution: For 4PAM the Ai values are Ai = {−3d,−d, d, 3d}, so the average energy is

Es =
d2

8
(9 + 1 + 1 + 9) = 2.5d2.

The decision regions Zi, i = 1, . . . ,M associated with the pulse amplitude Ai = (2i − 1 −M)d for
M = 4 and M = 8 are shown in Figure 5.13. Mathematically, for any M , these decision regions are
defined by

Zi =




(−∞, Ai + d) i = 1
[A,Ai) 2 ≤ i ≤M − 1
[Ai − d,∞) i = M

From (5.52) we see that MPAM has only a single basis function φ1(t) = g(t) cos(2πfct). Thus, the
coherent demodulator of Figure 5.11 for MPAM reduces to the demodulator shown in Figure 5.14, where
the multithreshold device maps x to a decision region Zi and outputs the corresponding bit sequence
m̂ = mi = {b1, . . . ,bK}.

5.3.2 Phase Shift Keying (MPSK)

For MPSK all of the information is encoded in the phase of the transmitted signal. Thus, the transmitted
signal over one symbol time is given by

si(t) = <{Ag(t)ej2π(i−1)/Mej2πfct}, 0 ≤ t ≤ Ts

= Ag(t) cos
[
2πfct+

2π(i− 1)
M

]

= Ag(t) cos
[
2π(i− 1)

M

]
cos 2πfct−Ag(t) sin

[
2π(i− 1)

M

]
sin 2πfct. (5.55)
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Figure 5.13: Decision Regions for MPAM
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Figure 5.14: Coherent Demodulator for MPAM

Thus, the constellation points or symbols (si1, si2) are given by si1 = A cos[2π(i−1)
M ] and si2 = A sin[2π(i−1)

M ]
for i = 1, . . . ,M . The pulse shape g(t) satisfies (5.12) and (5.13), and θi = 2π(i−1)

M , i = 1, 2, . . . ,M = 2K

are the different phases in the signal constellation points that convey the information bits. The minimum
distance between constellation points is dmin = A sin(2π/M), where A is typically a function of the signal
energy. 2PSK is often referred to as binary PSK or BPSK, while 4PSK is often called quadrature phase
shift keying (QPSK), and is the same as MQAM with M = 4 which is defined below.

All possible transmitted signals si(t) have equal energy:

Esi =
∫ Ts

0
s2i (t)dt = A2 (5.56)

Note that for g(t) =
√

2/Ts, 0 ≤ t ≤ Ts, i.e. a rectangular pulse, this signal has constant envelope,
unlike the other amplitude modulation techniques MPAM and MQAM. However, rectangular pulses are
spectrally-inefficient, and more efficient pulse shapes make MPSK nonconstant envelope. As for MPAM,
constellation mapping is usually done by Gray encoding, where the messages associated with signal phases
that are adjacent to each other differ by one bit value, as illustrated in Figure 5.15. With this encoding
method, mistaking a symbol for an adjacent one causes only a single bit error.

The decision regions Zi, i = 1, . . . ,M associated with MPSK for M = 8 are shown in Figure 5.16. If
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Figure 5.15: Gray Encoding for MPSK.

we represent x = rejθ ∈ R2 in polar coordinates then these decision regions for any M are defined by

Zi = {rejθ : 2π(i− .5)/M ≤ θ < 2π(i+ .5)/M}. (5.57)

From (5.55) we see that MPSK has both in-phase and quadrature components, and thus the coherent
demodulator is as shown in Figure 5.11. For the special case of BPSK, the decision regions as given in
Example 5.2 simplify to Z1 = (x : x > 0) and Z2 = (x : x ≤ 0). Moreover BPSK has only a single basis
function φ1(t) = g(t) cos(2πfct) and, since there is only a single bit transmitted per symbol time Ts, the
bit time Tb = Ts. Thus, the coherent demodulator of Figure 5.11 for BPSK reduces to the demodulator
shown in Figure 5.17, where the threshold device maps x to the positive or negative half of the real line,
and outputs the corresponding bit value. We have assumed in this figure that the message corresponding
to a bit value of 1, m1 = 1, is mapped to constellation point s1 = A and the message corresponding to a
bit value of 0, m2 = 0, is mapped to the constellation point s2 = −A.

Z1

Z2

Z3

Z4

Z1

Z2

Z
Z

Z

Z

Z
Z

3
4

5

6

7
8

Figure 5.16: Decision Regions for MPSK

5.3.3 Quadrature Amplitude Modulation (MQAM)

For MQAM, the information bits are encoded in both the amplitude and phase of the transmitted signal.
Thus, whereas both MPAM and MPSK have one degree of freedom in which to encode the information
bits (amplitude or phase), MQAM has two degrees of freedom. As a result, MQAM is more spectrally-
efficient than MPAM and MPSK, in that it can encode the most number of bits per symbol for a given
average energy.
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Figure 5.17: Coherent Demodulator for BPSK.

The transmitted signal is given by

si(t) = <{Aiejθig(t)ej2πfct} = Ai cos(θi)g(t) cos(2πfct) −Ai sin(θi)g(t) sin(2πfct), 0 ≤ t ≤ Ts. (5.58)

where the pulse shape g(t) satisfies (5.12) and (5.13). The energy in si(t) is

Esi =
∫ Ts

0
s2i (t) = A2

i , (5.59)

the same as for MPAM. The distance between any pair of symbols in the signal constellation is

dij = ||si − sj || =
√

(si1 − sk1)2 + (si2 − sk2)2. (5.60)

For square signal constellations, where si1 and si2 take values on (2i−1−L)d, i = 1, 2, . . . , L = 2l, the
minimum distance between signal points reduces to dmin = 2d, the same as for MPAM. In fact, MQAM
with square constellations of size L2 is equivalent to MPAM modulation with constellations of size L
on each of the in-phase and quadrature signal components. Common square constellations are 4QAM
and 16QAM, which are shown in Figure 5.18 below. These square constellations have M = 22l = L2

constellation points, which are used to send 2l bits/symbol, or l bits per dimension. It can be shown
that the average power of a square signal constellation with l bits per dimension, Sl, is proportional
to 4l/3, and it follows that the average power for one more bit per dimension Sl+1 ≈ 4Sl. Thus, for
square constellations it takes approximately 6 dB more power to send an additional 1 bit/dimension or
2 bits/symbol while maintaining the same minimum distance between constellation points.

Good constellation mappings can be hard to find for QAM signals, especially for irregular constel-
lation shapes. In particular, it is hard to find a Gray code mapping where all adjacent symbols differ
by a single bit. The decision regions Zi, i = 1, . . . ,M associated with MQAM for M = 16 are shown in
Figure 5.19. From (5.58) we see that MQAM has both in-phase and quadrature components, and thus
the coherent demodulator is as shown in Figure 5.11.

5.3.4 Differential Modulation

The information in MPSK and MQAM signals is carried in the signal phase. Thus, these modulation
techniques require coherent demodulation, i.e. the phase of the transmitted signal carrier φ0 must be
matched to the phase of the receiver carrier φ. Techniques for phase recovery typically require more
complexity and cost in the receiver and they are also susceptible to phase drift of the carrier. Moreover,
obtaining a coherent phase reference in a rapidly fading channel can be difficult. Issues associated with
carrier phase recovery are dicussed in more detail in Section 5.6. Due to the difficulties as well as the
cost and complexity associated with carrier phase recovery, differential modulation techniques, which do
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4−QAM 16−QAM

Figure 5.18: 4QAM and 16QAM Constellations.

not require a coherent phase reference at the receiver, are generally preferred to coherent modulation for
wireless applications.

Differential modulation falls in the more general class of modulation with memory, where the symbol
transmitted over time [kTs, (k + 1)Ts) depends on the bits associated with the current message to be
transmitted and the bits transmitted over prior symbol times. The basic principle of differential modula-
tion is to use the previous symbol as a phase reference for the current symbol, thus avoiding the need for a
coherent phase reference at the receiver. Specifically, the information bits are encoded as the differential
phase between the current symbol and the previous symbol. For example, in differential BPSK, referred
to as DPSK, if the symbol over time [(k − 1)Ts, kTs) has phase θ(k − 1) = ejθi , θi = 0, π, then to encode
a 0 bit over [kTs, (k + 1)Ts), the symbol would have phase θ(k) = ejθi and to encode a 1 bit the symbol
would have phase θ(k) = ejθi + π. In other words, a 0 bit is encoded by no change in phase, whereas
a 1 bit is encoded as a phase change of π. Similarly, in 4PSK modulation with differential encoding,
the symbol phase over symbol interval [kTs, (k+ 1)Ts) depends on the current information bits over this
time interval and the symbol phase over the previous symbol interval. The phase transitions for DQPSK
modulation are summarized in Table 5.1. Specifically, suppose the symbol over time [(k − 1)Ts, kTs)
has phase θ(k − 1) = ejθi . Then, over symbol time [kTs, (k + 1)Ts), if the information bits are 00, the
corresponding symbol would have phase θ(k) = ejθi , i.e. to encode the bits 00, the symbol from symbol
interval [(k− 1)Ts, kTs) is repeated over the next interval [kTs, (k+ 1)Ts). If the two information bits to
be sent at time interval [kTs, (k+1)Ts) are 01, then the corresponding symbol has phase θ(k) = ej(θi+π/2).
For information bits 10 the symbol phase is θ(k) = ej(θi−π/2), and for information bits 11 the symbol
phase is θ(n) = ej(θk+π). We see that the symbol phase over symbol interval [kTs, (k + 1)Ts) depends
on the current information bits over this time interval and the symbol phase θi over the previous sym-
bol interval. Note that this mapping of bit sequences to phase transitions ensures that the most likely
detection error, that of mistaking a received symbol for one of its nearest neighbors, results in a single
bit error. For example, if the bit sequence 00 is encoded in the kth symbol then the kth symbol has
the same phase as the (k − 1)th symbol. Assume this phase is θi. The most likely detection error of
the kth symbol is to decode it as one of its nearest neighbor symbols, which have phase θi ± π/2. But
decoding the received symbol with phase θi ± π/2 would result in a decoded information sequence of
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Figure 5.19: Decision Regions for MQAM with M = 16

either 01 or 10, i.e. it would differ by a single bit from the original sequence 00. More generally, we can
use Gray encoding for the phase transitions in differential MPSK for any M , so that a message of all 0
bits results in no phase change, a message with a single 1 bit and the rest 0 bits results in the minimum
phase change of 2π/M , a message with two 1 bits and the rest 0 bits results in a phase change of π/M ,
and so forth. Differential encoding is most common for MPSK signals, since the differential mapping is
relatively simple. Differential encoding can also be done for MQAM with a more complex differential
mapping. Differential encoding of MPSK is denoted by D-MPSK, and for BPSK and QPSK this becomes
DPSK and D-QPSK, respectively.

Bit Sequence Phase Transition
00 0
01 π/2
10 −π/2
11 π

Table 5.1: Mapping for D-QPSK with Gray Encoding

Example 5.5:
Find the sequence of symbols transmitted using DPSK for the bit sequence 101110 starting at the kth
symbol time, assuming the transmitted symbol at the (k − 1)th symbol time was s(k − 1) = Aejπ.

Solution: The first bit, a 1, results in a phase transition of π, so s(k) = A. The next bit, a 0, re-
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sults in no transition, so s(k + 1) = A. The next bit, a 1, results in another transition of π, so
s(k+1) = Aejπ, and so on. The full symbol sequence corresponding to 101110 is A,A,Aejπ, A,Aejπ, Aejπ.

The demodulator for differential modulation is shown in Figure 5.20. Assume the transmitted con-
stellation at time k is s(k) = Aejθ(k)+φ0 The received vector associated with the sampler outputs is

z(k) = x1(k) + jx2(k) = Aejθ(k)+φ0 + n(k), (5.61)

where n(k) is complex white Gaussian noise. The received vector at the previous time sample k − 1 is
thus

z(k − 1) = x1(k − 1) + jx2(k − 1) = Aejθ(k−1)+φ0 + n(k − 1). (5.62)

The phase difference between z(k) and z(k − 1) dictates which symbol was transmitted. Consider

z(k)z∗(k − 1) = A2ej(θ(k)−θ(k−1) +Aejθ(k)+φ0n∗(k − 1) +Ae−jθ(k−1)+φ0n(k) + n(k)n∗(k − 1). (5.63)

In the absence of noise (n(k) = n(k − 1) = 0) only the first term in (5.63) is nonzero, and this term
yields the desired phase difference. The phase comparator in Figure 5.20 extracts this phase difference
and outputs the corresponding symbol.

x(t)=s (t)+n(t)
i

1

m̂=m i

T
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π/2
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x  (k)2
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    T
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    T

    Phase
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1x  (k−1)

x  (k−1)2
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Figure 5.20: Differential PSK Demodulator.

Differential modulation is less sensitive to a random drift in the carrier phase. However, if the channel
has a nonzero Doppler frequency, the signal phase can decorrelate between symbol times, making the
previous symbol a very noisy phase reference. This decorrelation gives rise to an irreducible error floor
for differential modulation over wireless channels with Doppler, as we shall discuss in Chapter 6.

5.3.5 Constellation Shaping

Rectangular and hexagonal constellations have a better power efficiency than the square or circular con-
stellations associated with MQAM and MPSK, respectively. These irregular constellations can save up
to 1.3 dB of power at the expense of increased complexity in the constellation map [17]. The optimal
constellation shape is a sphere in N -dimensional space, which must be mapped to a sequence of constella-
tions in 2-dimensional space in order to be generated by the modulator shown in Figure 5.10. The general
conclusion in [17] is that for uncoded modulation, the increased complexity of spherical constellations is

149

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


not worth their energy gains, since coding can provide much better performance at less complexity cost.
However, if a complex channel code is already being used and little further improvement can be obtained
by a more complex code, constellation shaping may obtain around 1 dB of additional gain. An in-depth
discussion of constellation shaping, as well as constellations that allow a noninteger number of bits per
symbol, can be found in [17].

5.3.6 Quadrature Offset

A linearly modulated signal with symbol si = (si1, si2) will lie in one of the four quadrants of the signal
space. At each symbol time kTs the transition to a new symbol value in a different quadrant can cause
a phase transition of up to 180 degrees, which may cause the signal amplitude to transition through the
zero point: these abrupt phase transitions and large amplitude variations can be distorted by nonlinear
amplifiers and filters. These abrupt transitions are avoided by offsetting the quadrature branch pulse g(t)
by half a symbol period, as shown in Figure 5.21. This offset makes the signal less sensitive to distortion
during symbol transitions.

Phase modulation with phase offset is usually abbreviated as O-MPSK, where the O indicates the
offset. For example, QPSK modulation with quadrature offset is referred to as O-QPSK. O-QPSK has
the same spectral properties as QPSK for linear amplification, but has higher spectral efficiency under
nonlinear amplification, since the maximum phase transition of the signal is 90 degrees, corresponding to
the maximum phase transition in either the in-phase or quadrature branch, but not both simultaneously.
Another technique to mitigate the amplitude fluctuations of a 180 degree phase shift used in the IS-54
standard for digital cellular is π/4-QPSK [12]. This technique allows for a maximum phase transition of
135 degrees, versus 90 degrees for offset QPSK and 180 degrees for QPSK. Thus, π/4-QPSK does not
have as good spectral properties as O-QPSK under nonlinear amplification. However, π/4-QPSK can be
differentially encoded, eliminating the need for a coherent phase reference, which is a significant advantage.
Using differential encoding with π/4-QPSK is called π/4-DQPSK. The π/4-DQPSK modulation works
as follows: the information bits are first differentially encoded as in DQPSK, which yields one of the
four QPSK constellation points. Then, every other symbol transmission is shifted in phase by π/4. This
periodic phase shift has a similar effect as the time offset in OQPSK: it reduces the amplitude fluctuations
at symbol transitions, which makes the signal more robust against noise and fading.

5.4 Frequency Modulation

Frequency modulation encodes information bits into the frequency of the transmitted signal. Specifically,
each symbol time K = log2M bits are encoded into the frequency of the transmitted signal s(t), 0 ≤ t <
Ts, resulting in a transmitted signal si(t) = A cos(2πfit + φi), where i is the index of the ith message
corresponding to the log2M bits and φi is the phase associated with the ith carrier. The signal space
representation is si(t) =

∑
j sijφj(t) where sij = Aδ(i − j) and φj(t) = cos(2πfjt + φj), so the basis

functions correspond to carriers at different frequencies and only one such basis function is transmitted
in each symbol period. The orthogonality of the basis functions requires a minimum separation between
different carrier frequencies of ∆f = minij |fj − fi| = .5/Ts.

Since frequency modulation encodes information in the signal frequency, the transmitted signal s(t)
has a constant envelope A. Because the signal is constant envelope, nonlinear amplifiers can be used with
high power efficiency, and the modulated signal is less sensitive to amplitude distortion introduced by the
channel or the hardware. The price exacted for this robustness is a lower spectral efficiency: because the
modulation technique is nonlinear, it tends to have a higher bandwidth occupancy than the amplitude
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Figure 5.21: Modulator with Quadrature Offset.

and phase modulation techniques described in Section 5.3.
In it’s simplest form, frequency modulation over a given symbol period can be generated using

the modulator structure shown in Figure 5.22. Demodulation over each symbol period is performed
using the demodulation structure of Figure 5.23. Note that the demodulator of Figure 5.23 requires
that the jth carrier signal be matched in phase to the jth carrier signal at the transmitter, similar to
the coherent phase reference requirement in amplitude and phase modulation. An alternate receiver
structure that does not require this coherent phase reference will be discussed in Section 5.4.3. Another
issue in frequency modulation is that the different carriers shown in Figure 5.22 have different phases,
φi 6= φj for i 6= j, so that at each symbol time Ts there will be a phase discontinuity in the transmitted
signal. Such discontinuities can significantly increase signal bandwidth. Thus, in practice an alternate
modulator is used that generates a frequency modulated signal with continuous phase, as will be discussed
in Section 5.4.2 below.

5.4.1 Frequency Shift Keying (FSK) and Minimum Shift Keying (MSK)

In MFSK the modulated signal is given

si(t) = A cos[2πfct+ 2παi∆fct+ φi], 0 ≤ t < Ts, (5.64)

where αi = (2i−1−M), i = 1, 2, . . . ,M = 2K . The minimum frequency separation between FSK carriers
is thus 2∆fc. MFSK consists of M basis functions φi(t) =

√
2/Ts cos[2πfct+ 2παi∆fct+ φi], where the√

2/Ts is a normalization factor to insure that
∫ Ts
0 φ2

i (t) = 1. Over a given symbol time only one basis
function is transmitted through the channel.

A simple way to generate the MFSK signal is as shown in Figure 5.22, where M oscillators are
operating at the different frequencies fi = fc+αi∆fc and the modulator switches between these different
oscillators each symbol time Ts. However, with this implementation there will be a discontinuous phase
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transition at the switching times due to phase offsets between the oscillators. This discontinuous phase
leads to a spectral broadening, which is undesirable. An FSK modulator that maintains continuous phase
is discussed in the next section. Coherent detection of MFSK uses the standard structure of Figure 5.4.
For binary signaling the structure can be simplified to that shown in Figure 5.24, where the decision
device outputs a 1 bit if its input is greater than zero and a 0 bit if its input is less than zero.

MSK is a special case of FSK where the minimum frequency separation is 2∆fc = .5/Ts. Note that
this is the minimum frequency separation so that < si(t), sj(t) >= 0 over a symbol time, for i 6= j.
Since signal orthogonality is required for demodulation, 2∆fc = .5/Ts is the minimum possible frequency
separation in FSK, and therefore it occupies the minimum bandwidth.

5.4.2 Continuous-Phase FSK (CPFSK)

A better way to generate MFSK that eliminates the phase discontinuity is to frequency modulate a single
carrier with a modulating waveform, as in analog FM. In this case the modulated signal will be given by

si(t) = A cos
[
2πfct+ 2πβ

∫ t

−∞
u(τ)dτ

]
= A cos[2πfct+ θ(t)], (5.65)
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where u(t) =
∑
k akg(t−kTs) is an MPAM signal modulated with the information bit stream, as described

in Section 5.3.1. Clearly the phase θ(t) is continuous with this implementation. This form of MFSK is
therefore called continuous phase FSK, or CPFSK.

By Carson’s rule [1], for β small the transmission bandwidth of s(t) is approximately

Bs ≈M∆fc + 2Bg, (5.66)

where Bg is the bandwidth of the pulse shape g(t) used in the MPAM modulating signal u(t). By
comparison, the bandwidth of a linearly modulated waveform with pulse shape g(t) is roughly Bs ≈ 2Bg.
Thus, the spectral occupancy of a CPFSK-modulated signal is larger than that of a linearly modulated
signal by M∆fc ≥ .5M/Ts. The spectral efficiency penalty of CPFSK relative to linear modulation
increases with data rate, in particular with the number of of bits per symbol K = log2M and with the
symbol rate Rs = 1/Ts.

Coherent detection of CPFSK can be done symbol-by-symbol or over a sequence of symbols. The
sequence estimator is the optimal detector since a given symbol depends on previously transmitted sym-
bols, and therefore it is optimal to detect all symbols simultaneously. However, sequence detection can
be impractical due to the memory and computational requirements associated with making decisions
based on sequences of symbols. Details on both symbol-by-symbol and sequence detectors for coherent
demodulation of CPFSK can be found in [10, Chapter 5.3].

5.4.3 Noncoherent Detection of FSK

The receiver requirement for a coherent phase reference associated with each FSK carrier can be difficult
and expensive to meet. The need for a coherent phase reference can be eliminated by detecting the energy
of the signal at each frequency and, if the ith branch has the highest energy of all branches, then the
receiver outputs message mi. The modified receiver is shown in Figure 5.25.

Suppose the transmitted signal corresponds to frequency fi:

s(t) = A cos(2πfit+ φi) = A cos(φi) cos(2πfit) −A sin(φi) sin(2πfit), 0 ≤ t < Ts. (5.67)

The phase φi represents the phase offset between the transmitter and receiver oscillators at frequency fi.
The coherent receiver in Figure 5.23 only detects the first term A cos(φi) cos(2πfit) associated with the
received signal, which can be close to zero for a phase offset φi ≈ ±π/2. To get around this problem,
in Figure 5.25 the receiver splits the received signal into M branches corresponding to each frequency
fj , j = 1, . . . ,M . For each carrier frequency fj , j = 1, . . . ,M , the received signal is multiplied by a
noncoherent in-phase and quadrature carrier at that frequency, integrated over a symbol time, sampled,
and then squared. For the jth branch the squarer output associated with the in-phase component is
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Figure 5.25: Noncoherent FSK Demodulator

denoted as AjI +njI and the corresponding output associated with the quadrature component is denoted
as AjQ + njQ, where njI and njQ are due to the noise n(t) at the receiver input. Then if i = j,
AjI = A2 cos(φi) and AjQ = A2 sin(φi). If i 6= j then AjI = AjQ = 0. In the absence of noise, the input
to the decision device of the ith branch will be A2 cos(φi) + A2 sin(φi) = A2, independent of φi, and all
other branches will have an input of zero. Thus, over each symbol period, the decision device outputs the
bit sequence corresponding to frequency fj if the jth branch has the largest input to the decision device.
A similar structure where each branch consists of a filter matched to the carrier frequency followed by an
envelope detector and sampler can also be used [2, Chapter 6.8]. Note that the noncoherent receiver of
Figure 5.25 still requires accurate synchronization for sampling. Synchronization issues are discussed in
Section 5.6.

5.5 Pulse Shaping

For amplitude and phase modulation the bandwidth of the baseband and passband modulated signal
is a function of the bandwidth of the pulse shape g(t). if g(t) is a rectangular pulse of width Ts, then
the envelope of the signal is constant. However, a rectangular pulse has very high spectral sidelobes,
which means that signals must use a larger bandwidth to eliminate some of the adjacent channel sidelobe
energy. Pulse shaping is a method to reduce sidelobe energy relative to a rectangular pulse, however the
shaping must be done in such a way that intersymbol interference (ISI) between pulses in the received
signal is not introduced. Note that prior to sampling the received signal the transmitted pulse g(t) is
convolved with the channel impulse response c(t) and the matched filter g∗(−t), so to eliminate ISI prior
to sampling we must ensure that the effective received pulse p(t) = g(t) ∗ c(t) ∗ g∗(−t) has no ISI. Since
the channel model is AWGN, we assume c(t) = δ(t) so p(t) = g(t)∗g∗(−t): in Chapter 11 we will analyze
ISI for more general channel impulse responses c(t). To avoid ISI between samples of the received pulses,
the effective pulse shape p(t) must satisfy the Nyquist criterion, which requires the pulse equals zero at
the ideal sampling point associated with past or future symbols:

p(kTs) =

{
p0 = p(0) k = 0
0 k 6= 0

(5.68)
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In the frequency domain this translates to

∞∑
l=−∞

P (f + l/Ts) = p0Ts. (5.69)

The following pulse shapes all satisfy the Nyquist criterion.

1. Rectangular pulses: g(t) =
√

2/Ts, 0 ≤ t ≤ Ts, which yields the triangular effective pulse shape

p(t) =




2 + 2t/Ts −Ts ≤ t < 0
2 − 2t/Ts 0 ≤ t < Ts
0 else

This pulse shape leads to constant envelope signals in MPSK, but has lousy spectral properties due
to its high sidelobes.

2. Cosine pulses: p(t) = sinπt/Ts, 0 ≤ t ≤ Ts. Cosine pulses are mostly used in MSK modulation,
where the quadrature branch of the PSK modulation has its pulse shifted by Ts/2. This leads to a
constant amplitude modulation with sidelobe energy that is 10 dB lower than that of rectangular
pulses.

3. Raised Cosine Pulses: These pulses are designed in the frequency domain according to the desired
spectral properties. Thus, the pulse z(t) is first specified relative to its Fourier Transform:

P (f) =

{
Ts 0 ≤ |f | ≤ (1 − β)/2Ts
Ts
2

[
1 − sin πTs

β

(
f − 1

2Ts

)]
(1 − β)/2Ts ≤ |f | ≤ (1 + β)/2Ts

,

where β is defined as the rolloff factor, which determines the rate of spectral rolloff, as shown
in Figure 5.26. Setting β = 0 yields a rectangular pulse. The pulse f(t) in the time domain
corresponding to F (f) is

p(t) =
sinπt/Ts
πt/Ts

cosβπt/Ts
1 − 4β2t2/T 2

s

.

Both time and frequency domain properties of the Raised Cosine pulse are shown in Figure 5.26. The
tails of this pulse in the time domain decay as 1/t3 (faster than for the previous pulse shapes), so a
mistiming error in sampling leads to a series of intersymbol interference components that converge. A
variation of the Raised Cosine pulse is the Root Cosine pulse, derived by taking the square root of the
frequency response for the Raised Cosine pulse. The Root Cosine pulse has better spectral properties
than the Raised Cosine pulse, but it decays less rapidly in the time domain, which makes performance
degradation due to synchronization errors more severe. Specifically, a mistiming error in sampling leads
to a series of intersymbol interference components that may diverge.

Pulse shaping is also used with CPFSK to improve spectral efficiency, specifically in the MPAM
signal that is frequency modulated to form the FSK signal. The most common pulse shape used in FSK
is the Gaussian pulse shape, defined as

g(t) =
√
π

α
e−π

2t2/α2
, (5.70)
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Figure 5.26: Spectral and Time-Domain Properties of the Raised Cosine Pulse.

where α is a parameter that dictates spectral efficiency. The spectrum of g(t), which dictates the spectrum
of the FSK signal, is given by

G(f) = e−α
2f2
. (5.71)

The parameter α is related to the 3dB bandwidth of g(t),Bz, by

α =

√
− ln

√
.5

Bz
. (5.72)

Clearly making α large results in a higher spectral efficiency.
When the Gaussian pulse shape is applied to MSK modulation, it is abbreviated as GMSK. In general

GMSK signals have a high power efficiency since they are constant amplitude, and a high spectal efficiency
since the Gaussian pulse shape has good spectral properties for large α. For this reason GMSK is used in
the GSM standard for digital cellular systems. Although this is a good choice for voice modulation, it is
not necessarily a good choice for data. The Gaussian pulse shape does not satisfy the Nyquist criterion,
and therefore the pulse shape introduces ISI, which increases as α increases. Thus, improving spectral
efficiency by increasing α leads to a higher ISI level, thereby creating an irreducible error floor from this
self-interference. Since the required BER for voice is relatively high Pb ≈ 10−3, the ISI can be fairly high
and still maintain this target BER. In fact, it is generally used as a rule of thumb that BgTs = .5 is
a tolerable amount of ISI for voice transmission with GMSK. However, a much lower BER is required
for data, which will put more stringent constraints on the maximum α and corresponding minimum Bg,
thereby decreasing the spectral efficiency of GMSK for data transmission. ISI mitigation techniques such
as equalization can be used to reduce the ISI in this case so that a tolerable BER is possible without
significantly compromising spectral efficiency.
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5.6 Symbol Synchronization and Carrier Phase Recovery

One of the most challenging tasks of a digital demodulator is to acquire accurate symbol timing and
carrier phase information. Timing information, obtained via synchronization, is needed to delineate the
received signal associated with a given symbol. In particular, timing information is used to drive the
sampling devices associated with the demodulators for amplitude, phase, and frequency demodulation
shown in Figures 5.11 and 5.23. Carrier phase information is needed in all coherent demodulators for
both amplitude/phase and frequency modulation, as discussed in Sections 5.3 and 5.4 above.

This section gives a brief overview of standard techniques for synchronization and carrier phase
recovery in AWGN channels. In this context the estimation of symbol timing and carrier phase falls
under the broader category of signal parameter estimation in noise. Estimation theory provides the
theoretical framework to study this problem and to develop the maximum likelihood estimator of the
carrier phase and symbol timing. However, most wireless channels suffer from time-varying multipath in
addition to AWGN. Synchronization and carrier phase recovery is particularly challenging in such channels
since multipath and time variations can make it extremely difficult to estimate signal parameters prior
to demodulation. Moreover, there is little theory addressing good methods for parameter estimation of
carrier phase and symbol timing when corrupted by time-varying multipath in addition to noise. In most
performance analysis of wireless communication systems it is assumed that the receiver synchronizes to
the multipath component with delay equal to the average delay spread3, and then the channel is treated
as AWGN for recovery of timing information and carrier phase. In practice, however, the receiver will
sychronize to either the strongest multipath component or the first multipath component that exceeds
a given power threshold. The other multipath components will then compromise the receiver’s ability
to acquire timing and carrier phase, especially in wideband systems like UWB. Multicarrier and spread
spectrum systems have addition considerations related to synchronization and carrier recovery which will
be discussed in Chapters 12 and 13, respectively.

The importance of synchronization and carrier phase estimation cannot be overstated: without it
wireless systems could not function. Moreover, as data rates increase and channels become more complex
by adding addition degrees of freedom (e.g. multiple antennas), the task of receiver synchronizaton and
phase recovery becomes even more complex and challenging. Techniques for synchronization and carrier
recovery have been developed and analyzed extensively for many years, and these techniques continually
evolve to meet the challenges associated with higher data rates, new system requirements, and more
challenging channel characteristics. We give only a brief introduction to synchronizaton and carrier
phase recovery techniques in this section. Comprehensive coverage of this topic as well as performance
analysis of these techniques can be found in [18, 19], and more condensed treatments can be found in [6,
Chapter 6],[20].

5.6.1 Receiver Structure with Phase and Timing Recovery

The carrier phase and timing recovery circuitry for the amplitude and phase demodulator is shown
in Figure 5.27. For BPSK only the in-phase branch of this demodulator is needed. For the coherent
frequency demodulator of Figure 5.23 a carrier phase recovery circuit is needed for each of the distinct
M carriers, and the resulting circuit complexity motivates the need for the noncoherent demodulators
described in Section 5.4.3. We see in Figure 5.27 that the carrier phase and timing recovery circuits
operate directly on the received signal prior to demodulation.

3That is why delay spread is typically characterized by its rms value about its mean, as discussed in more detail in
Chapter 2.
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Figure 5.27: Receiver Structure with Carrier and Timing Recovery.

Assuming an AWGN channel, the received signal x(t) is a delayed version of the transmitted signal
s(t) plus AWGN n(t): x(t) = s(t−τ)+n(t), where τ is the random propagation delay. Using the complex
baseband form we have s(t) = <[u(t)ej(2πfct+φ0)] and thus

x(t) = <
{(
u(t− τ)ejφ + z(t)

)
ej2πfct

}
, (5.73)

where φ = φ0 − 2πfcτ results from the transmit carrier phase and the propagation delay. Estimation of
τ is needed for symbol timing, and estimation of φ is needed for carrier phase recovery. Let us express
these two unknown parameters as a vector θ = (φ, τ). Then we can express the received signal in terms
of θ as

x(t) = s(t; θ) + n(t). (5.74)

Parameter estimation must take place over some finite time interval T0 ≥ Ts. We call T0 the observation
interval. In practice, however, parameter estimation is done initially over this interval and thereafter
estimation is performed continually by updating the initial estimatre using tracking loops. Our devel-
opment below focuses just on the initial parameter estimation over T0: discussion of parameter tracking
can be found in [18, 19].

There are two common estimation methods for signal parameters in noise, the maximum-likelhood
criterion (ML), discussed in Section 5.1.4 in the context of receiver design, and the maximum a posteriori
(MAP) criterion. The ML criterion choses the estimate θ̂ that maximizes p(x(t)|θ) over the observation
interval T0, whereas the MAP criterion assumes some probability distribution on θ, p(θ), and choses the
estimate θ̂ that maximizes

p(θ|x(t)) =
p(x(t)|θ)p(θ)
p(x(t))

over T0. We assume that there is no prior knowledge of θ̂, so that p(θ) becomes uniform and therefore
the MAP and ML criteria are equivalent.

To characterize the distribution p(x(t)|θ), 0 ≤ t < T0, let us expand x(t) over the observation interval
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along a set of orthonormal basis functions {φk(t)} as

x(t) =
K∑
k=1

xkφk(t), 0 ≤ t < T0.

Since n(t) is white with zero mean and power spectral densityN0/2, the pdf of the vector x = (x1, . . . , xK)
conditioned on the unknown parameter θ is given by

p(x|θ) =
(

1√
πN0σ

)K
exp

[
−

K∑
k=1

(xk − sk(θ))2

N0

]
, (5.75)

where by the basis expansion

xk =
∫
T0

x(t)φk(t),

and we define
sk(θ) =

∫
T0

s(t; θ)φk(t).

We can show that
K∑
k=1

[xk − sk(θ)]2 =
∫
T0

[x(t) − s(t; θ)]2dt. (5.76)

Using this in (5.75) yields that maximizing p(x|θ) is equivalent to maximizing the likelihood function

Λ(θ) = exp
[
− 1
N0

∫
T0

[x(t) − s(t; θ)]2
]
dt. (5.77)

Maximization of the likelihood function (5.77) results in the joint ML estimate of the carrier phase
and symbol timing. ML estimation of the carrier phase and symbol timing can also be done separately.
In subsequent sections we will discuss the separate estimation of carrier phase and symbol timing in more
detail. Techniques for joint estimation are more complex: details of such techniques can be found in [18,
Chapters 8-9],[6, Chapter 6.4].

5.6.2 Maximum Likelihood Phase Estimation

In this section we derive the maximum likelihood phase estimate assuming the timing is known. The
likelihood function (5.77) with timing known reduces to

Λ(φ) = exp
[
− 1
N0

∫
T0

[x(t) − s(t;φ)]2dt
]

= exp
[
− 1
N0

∫
T0

x2(t)dt+
2
N0

∫
T0

x(t)s(t;φ)dt− 1
N0

s2(t;φ)dt.
]

(5.78)

We estimate the carrier phase as the value φ̂ that maximizes this function. Note that the first term in
(5.78) is independent of φ. Moreover, we assume that the third integral, which measures the energy in
s(t;φ) over the observation interval, is relatively constant in φ. With these observations we see that the
φ̂ that maximizes (5.78) also maximizes

Λ′(φ) =
∫
T0

x(t)s(t;φ)dt. (5.79)
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We can solve directly for the maximizing φ̂ in the simple case where the received signal is just an
unmodulated carrier plus noise: x(t) = A cos(2πfct+ φ) + n(t). Then φ̂ must maximize

Λ′(φ) =
∫
T0

x(t) cos(2πfct+ φ)dt. (5.80)

Differentiating Λ′(φ) relative to φ and setting it to zero yields that φ̂ satisfies∫
T0

x(t) sin(2πfct+ φ̂)dt = 0. (5.81)

Solving (5.81) for φ̂ yields

φ̂ = − tan−1

[ ∫
T0
x(t) sin(2πfct)dt∫

T0
x(t) cos(2πfct)dt

]
. (5.82)

While we can build a circuit to compute (5.82) from the received signal x(t), in practice carrier phase
recovery is done using a phase lock loop to satisfy (5.81), as shown in Figure 5.21. In this figure the
integrator input in the absence of noise is given by e(t) = x(t) sin(2πfct+ φ̂), and the integrator output
is

z(t) =
∫
T0

x(t) sin(2πfct+ φ̂)dt,

which is precisely the left hand side of (5.81). Thus, if z(t) = 0 then the estimate φ̂ is the maximum-
likelihood estimate for φ. If z(t) 6= 0 then the VCO adjusts its phase estimate φ̂ up or down depending
on the polarity of z(t): for z(t) > 0 it decreases φ̂ to reduce z(t), and for z(t) < 0 it increases φ̂ to
increase z(t). In practice the integrator in Figure 5.21 is replaced with a loop filter whose output
.5A sin(φ̂−φ) ≈ .5A(φ̂−φ) is a function of the low-frequency component of its input e(t) = A cos(2πfct+
φ) sin(2πfct+ φ̂) = .5A sin(φ̂− φ) + .5A sin(2πfct+ φ + φ̂). The above discussion of the PLL operation
assumes that φ̂ ≈ φ since otherwise the polarity of z(t) may not indicate the correct phase adjustment,
i.e. we would not necessarily have sin(φ̂−φ) ≈ φ̂−φ. The PLL typically exhibits some transient behavior
in its initial estimation of the carrier phase. The advantage of a PLL is that it continually adjusts its
estimate φ̂ to maintain z(t) = 0, which corrects for slow phase variations due to oscillator drift at the
transmitter or changes in the propagation delay. In fact the PLL is an example of a feedback control
loop. More details on the PLL and its performance can be found in [6, 18].

X

VCO

x(t)

 T0

e(t) z(t)(  )dt

sin(2   f  t+  )c φ̂π

Figure 5.28: Phase Lock Loop for Carrier Phase Recovery (Unmodulated Carrier)

The PLL derivation is for an unmodulated carrier, yet amplitude and phase modulation embed the
message bits into the amplitude and phase of the carrier. For such signals there are two common carrier
phase recovery approaches to deal with the effect of the data sequence on the received signal: the data
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sequence is either assumed known or it is treated as random such that the phase estimate is averaged
over the data statistics. The first scenario is refered to as decision-directed parameter estimation, and
this scenario typically results from sending a known training sequence. The second scenario is refered
to as non decision-directed parameter estimation. With this technique the likelihood function (5.78)
is maximized by averaging over the statistics of the data. One decision-directed technique uses data
decisions to remove the modulation of the received signal: the resulting unmodulated carrier is then
passed through a PLL. This basic structure is called a decision-feedback PLL since data decisions are
fed back into the PLL for processing. The structure of a non decision-directed carrier phase recovery loop
depends on the underlying distribution of the data. For large constellations most distributions lead to
highly nonlinear functions of the parameter to be estimated. In this case the symbol distribution is often
assumed to be Gaussian along each signal dimension, which greatly simplifies the recovery loop structure.
An alternate non decision-directed structure takes the Mth power of the signal (M = 2 for PAM and M
for MPSK modulation), passes it through a bandpass filter at frequency Mfc, and then uses a PLL. The
nonlinear operation removes the effect of the amplitude or phase modulation so that the PLL can operate
on an unmodulated carrier at frequency Mfc. Many other structures for both decision-directed and non
decision-directed carrier recovery can be used, with different tradeoffs in performance and complexity. A
more comprehensive discussion of design and performance of carrier phase recovery be found in [18],[6,
Chapter 6.2.4-6.2.5].

5.6.3 Maximum-Likelihood Timing Estimation

In this section we derive the maximum likelihood delay τ assuming the carrier phase is known. Since we
assume that the phase φ is known, the timing recovery will not affect downconversion by the carrier shown
in Figure 5.27. Thus, it suffices to consider timing estimation for the in-phase or quadrature baseband
equivalent signals of x(t) and s(t; τ). We denote the in-phase and quadrature components for x(t) as
xI(t) and xQ(t) and for s(t; τ) as sI(t; τ) and sQ(t; τ). We focus on the in-phase branch as the timing
recovered from this branch can be used for the quadrature branch. The baseband equivalent in-phase
signal is given by

sI(t; τ) =
∑
k

sI(k)g(t− kTs − τ) (5.83)

where g(t) is the pulse shape and sI(k) denotes the amplitude associated with the in-phase component of
the message transmitted over the kth symbol period. The in-phase baseband equivalent received signal
is xI(t) = sI(t; τ) + nI(t). As in the case of phase synchronization, there are two categories of timing
estimators: those for which the information symbols output from the demodulator are assumed known
(decision-directed estimators), and those for which this sequence is not assumed known (non decision-
directed estimators).

The likelihood function (5.77) with known phase φ has a similar form as (5.78), the case of known
delay:

Λ(τ) = exp
[
− 1
N0

∫
T0

[xI(t) − sI(t; τ)]2dt
]
.

= exp
[
− 1
N0

∫
T0

x2
I(t)dt+

2
N0

∫
T0

xI(t)sI(t; τ)dt− 1
N0

s2I(t; τ)dt.
]

(5.84)

Since the first and third terms in (5.84) do not change significantly with τ , the delay estimate τ̂ that
maximizes (5.84) also maximizes

Λ′(τ) =
∫
T0

xI(t)sI(t; τ)dt =
∑
k

sI(k)
∫
T0

x(t)g(t− kTs − τ)dt =
∑
k

sI(k)zk(τ), (5.85)
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where
zk(τ) =

∫
T0

x(t)g(t− kTs − τ)dt. (5.86)

Differentiating (5.85) relative to τ and setting it to zero yields that the timing estimate τ̂ must satisfy

∑
k

sI(k)
∂

∂τ
zk(τ) = 0. (5.87)

For decision-directed estimation, (5.87) gives rise to the estimator shown in Figure 5.22. The input
to the voltage-controlled clock (VCC) is (5.87). If this input is zero, then the timing estimate τ̂ = τ .
If not the clock (i.e. the timing estimate τ̂) is adjusted to drive the VCC input to zero. This timing
estimation loop is also an example of a feedback control loop.

x (t)
I g(−t) Differentiator

s
Sampler
   (T  )

dz (  )k τ
dτ

X

s (k)I

Σ
k

VCC

nT+s τ̂

Figure 5.29: Decision-Directed Timing Estimation

One structure for non decision-directed timing estimation is the early-late gate synchronizer
shown in Figure 5.23. This structure exploits two properties of the autocorrelation of g(t), Rg(τ) =∫ Ts
0 g(t)g(t− τ)dt, namely its symmetry (Rg(τ) = Rg(−τ)) and that fact that its maximum value is at
τ = 0. The input to the sampler in the upper branch of Figure 5.23 is proportional to the autocorrelation
Rg(τ̂ − τ + δ) =

∫ Ts
0 g(t− τ)g(t− τ̂ + δ) and the input to the sampler in the lower branch is proportional

to the autocorrelation Rg(τ̂ − τ − δ) =
∫ Ts
0 g(t − τ)g(t − τ̂ − δ). If τ̂ = τ then, since Rg(δ) = Rg(−δ),

the input to the loop filter will be zero and the voltage controlled clock (VCC) will maintain its correct
timing estimate. If τ̂ > τ then Rg(τ̂ − τ + δ) > Rg(τ̂ − τ − δ), and this negative input to the VCC will
cause it to decrease its estimate of τ̂ . Conversely, if τ̂ > τ then Rg(τ̂ − τ + δ) > Rg(τ̂ − τ − δ), and this
positive input to the VCC will cause it to increase its estimate of τ̂ .

More details on these and other structures for decision-directed and non decision-directed timing
estimation as well as their performance tradeoffs can be found in [18],[6, Chapter 6.2.4-6.2.5].
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Figure 5.30: Early-Late Gate Synchronizer
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Chapter 5 Problems

1. Show using properties of orthonormal basis functions that if si(t) and sj(t) have constellation points
si and si, respectively, then

||si − sj ||2 =
∫ T

0
(si(t) − sj(t))2dt.

2. Find an alternate set of orthonormal basis functions for the space spanned by cos(2πt/T ) and
sin(2πt/T ).

3. Consider a set of M orthogonal signal waveforms sm(t), 1 ≤ m ≤ M , 0 ≤ t ≤ T , all of which have
the same energy E . Define a new set of M waveforms as

s′m(t) = sm(t) − 1
M

M∑
i=1

si(t), 1 ≤ m ≤M, 0 ≤ t ≤ T

Show that the M signal waveforms {s′m(t)} have equal energy, given by

E ′ = (M − 1)E/M

What is the inner product between any two waveforms.

4. Consider the three signal waveforms {φ1(t), φ2(t), φ3(t)} shown below

2

1/2

-1

f1(t)

40 2

1/2

f2(t)

40

2

1/2

-1/2

f3(t)

40

(a) Show that these waveforms are orthonormal.

(b) Express the waveform x(t) as a linear combination of {φi(t)} and find the coefficients, where
x(t) is given as

x(t) =




−1 (0 ≤ t ≤ 1)
1 (1 ≤ t ≤ 3)
−1 (3 ≤ t ≤ 4)

5. Consider the four signal waveforms as shown in the figure below

(a) Determine the dimensionality of the waveforms and a set of basis functions.

(b) Use the basis functions to represent the four waveforms by vectors.
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2

2

-1

s1(t)

40 2

1

-1

s2(t)

40

3

1

-2

s3(t)

40 3

1

-2

s4(t)

40

(c) Determine the minimum distance between all the vector pairs.

6. Derive a mathematical expression for decision regions Zi that minimize error probability assuming
that messages are not equally likely, i.e. p(mi) = pi, i = 1, . . . ,M , where pi is not necessarily equal
to 1/M . Solve for these regions in the case of QPSK modulation with s1 = (Ac, 0), s2 = (0, Ac),
s3 = (−Ac, 0) and s4 = (0, Ac), with p(s1) = p(s3) = .2 and p(s1) = p(s3) = .3

7. Show that the remainder noise term nr(tk) is independent of the correlator outputs xi for all i,
i.e. show that E[nr(tk)xi] = 0, ∀ i. Thus, since xj conditioned on si and nr(t) are Gaussian and
uncorrelated, they are independent.

8. Show that if a given input signal is passed through a filter matched to that signal, the output SNR
is maximized.

9. Find the matched filters g(T − t), 0 ≤ t ≤ T and plot
∫ T
0 g(t)g(T − t)dt for the following waveforms:

(a) Rectangular pulse: g(t) =
√

2
T

(b) Sinc pulse: g(t) = sinc(t).

(c) Gaussian pulse: g(t) =
√
π
α e

−π2t2/α2

10. Show that the ML receiver of Figure 5.4 is equivalent to the matched filter receiver of Figure 5.7

11. Compute the three bounds (5.40), (5.43), (5.44), and the approximation (5.45) for an asymmetric
signal constellation s1 = (Ac, 0), s2 = (0, 2Ac), s3 = (−2Ac, 0) and s4 = (0,−Ac), assuming that
Ac/

√
N0 = 4

12. Find the input to each branch of the decision device in Figure 5.10 if the transmit carrier phase φ0

differs from the receiver carrier phase φ by ∆φ.

13. Consider a 4-PSK constellation with dmin =
√

2. What is the additional energy required to send
one extra bit (8-PSK) while keeping the same minimum distance (and consequently the same bit
error probability)?
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14. Show that the average power of a square signal constellation with l bits per dimension, Sl, is
proportional to 4l/3 and that the average power for one more bit per dimension Sl+1 ≈ 4Sl. Find
Sl for l = 2 and compute the average energy of MPSK and MPAM constellations with the same
number of bits per symbol.

15. For MPSK with differential modulation, let ∆φ denote the phase drift of the channel over a symbol
time Ts. In the absence of noise, how large must ∆φ be to make a detection error?

16. Find the Gray encoding of bit sequences to phase transitions in differential 8PSK. Then find the
sequence of symbols transmitted using differential 8PSK modulation with this Gray encoding for
the bit sequence 101110100101110 starting at the kth symbol time, assuming the transmitted
symbol at the (k − 1)th symbol time is s(k − 1) = Aejπ/4.

17. Consider the octal signal point constellation in the figure shown below

r

45o

b

a

8 - QAM8 - PSK

(a) The nearest neighbor signal points in the 8-QAM signal constellation are s eparated in distance
by A. Determine the radii a and b of the inner and outer circles.

(b) The adjacent signal points in the 8-PSK are separated by a distance of A. Determine the
radius r of the circle.

(c) Determine the average transmitter powers for the two signal constellations and compare the
two powers. What is the relative power advantage of one constel lation over the other? (Assume
that all signal points are equally probable.)

(d) Is it possible to assign three data bits to each point of the signal const ellation such that
nearest (adjacent) points differ in only one bit position?

(e) Determine the symbol rate if the desired bit rate is 90 Mbps.

18. The π/-QPSK modulation may be considered as two QPSK systems offset by π/4 radians.

(a) Sketch the signal space diagram for a π/4-QPSK signal.
(b) Using Gray encoding, label the signal points with the corresponding data bits.
(c) Determine the sequence of symbols transmitted via π/4-QPSK for the bit sequence 0100100111100101.
(d) Repeat part (c) for π/4-DQPSK, assuming the last symbol transmitted on the in-phase branch

had a phase of π and the last symbol transmitted on the quadrature branch had a phase of
−3π/4.
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19. Show that the minimum frequency separation for FSK such that the cos(2πfjt) and cos(2πfit) are
orthogonal is ∆f = minij |fj − fi| = .5/Ts

20. Show that the Nyquist criterion for zero ISI pulses given by (5.68) is equivalent to the frequency
domain condition (5.69).

21. Show that the Gaussian pulse shape does not satisfy the Nyquist criterion.
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Chapter 6

Performance of Digital Modulation over
Wireless Channels

We now consider the performance of the digital modulation techniques discussed in the previous chapter
when used over AWGN channels and channels with flat-fading. There are two performance criteria of
interest: the probability of error, defined relative to either symbol or bit errors, and the outage probability,
defined as the probability that the instantaneous signal-to-noise ratio falls below a given threshold. Flat-
fading can cause a dramatic increase in either the average bit-error-rate or the signal outage probability.
Wireless channels may also exhibit frequency selective fading and Doppler shift. Frequency-selective
fading gives rise to intersymbol interference (ISI), which causes an irreducible error floor in the received
signal. Doppler causes spectral broadening, which leads to adjacent channel interference (typically small
at reasonable user velocities), and also to an irreducible error floor in signals with differential phase
encoding (e.g. DPSK), since the phase reference of the previous symbol partially decorrelates over a
symbol time. This chapter describes the impact on digital modulation performance of noise, flat-fading,
frequency-selective fading, and Doppler.

6.1 AWGN Channels

In this section we define the signal-to-noise power ratio (SNR) and its relation to energy-per-bit (Eb)
and energy-per-symbol (Es). We then examine the error probability on AWGN channels for different
modulation techniques as parameterized by these energy metrics. Our analysis uses the signal space
concepts of Chapter 5.1.

6.1.1 Signal-to-Noise Power Ratio and Bit/Symbol Energy

In an AWGN channel the modulated signal s(t) = <{u(t)ej2πfct} has noise n(t) added to it prior to
reception. The noise n(t) is a white Gaussian random process with mean zero and power spectral density
N0/2. The received signal is thus r(t) = s(t) + n(t).

We define the received signal-to-noise power ratio (SNR) as the ratio of the received signal power Pr
to the power of the noise within the bandwidth of the transmitted signal s(t). The received power Pr is
determined by the transmitted power and the path loss, shadowing, and multipath fading, as described
in Chapters 2-3. The noise power is determined by the bandwidth of the transmitted signal and the
spectral properties of n(t). Specifically, if the bandwidth of the complex envelope u(t) of s(t) is B then
the bandwidth of the transmitted signal s(t) is 2B. Since the noise n(t) has uniform power spectral
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density N0/2, the total noise power within the bandwidth 2B is N = N0/2× 2B = N0B. So the received
SNR is given by

SNR =
Pr
N0B

.

The SNR is often expressed in terms of the signal energy per bit Eb or per symbol Es as

SNR =
Pr
N0B

=
Es

N0BTs
=

Eb
N0BTb

, (6.1)

where Ts is the symbol time and Tb is the bit time (for binary modulation Ts = Tb and Es = Eb). For
data pulses with Ts = 1/B, e.g. raised cosine pulses with β = 1, we have SNR = Es/N0 for multilevel
signaling and SNR = Eb/N0 for binary signaling. For general pulses, Ts = k/B for some constant k, in
which case k · SNR = Es/N0.

The quantities γs = Es/N0 and γb = Eb/N0 are sometimes called the SNR per symbol and the SNR
per bit, respectively. For performance specification, we are interested in the bit error probability Pb as a
function of γb. However, for M-aray signaling (e.g. MPAM and MPSK), the bit error probability depends
on both the symbol error probability and the mapping of bits to symbols. Thus, we typically compute
the symbol error probability Ps as a function of γs based on the signal space concepts of Chapter 5.1
and then obtain Pb as a function of γb using an exact or approximate conversion. The approximate
conversion typically assumes that the symbol energy is divided equally among all bits, and that Gray
encoding is used so that at reasonable SNRs, one symbol error corresponds to exactly one bit error. These
assumptions for M-aray signaling lead to the approximations

γb ≈ γs
log2M

(6.2)

and
Pb ≈ Ps

log2M
. (6.3)

6.1.2 Error Probability for BPSK and QPSK

We first consider BPSK modulation with coherent detection and perfect recovery of the carrier frequency
and phase. With binary modulation each symbol corresponds to one bit, so the symbol and bit error
rates are the same. The transmitted signal is s1(t) = Ag(t) cos(2πfct) to sent a 0 bit and s2(t) =
−Ag(t) cos(2πfct) to send a 1 bit. From (5.46) we have that the probability of error is

Pb = Q

(
dmin√
2N0

)
. (6.4)

From Chapter 5, dmin = ||s1 − s0|| = ||A− (−A)|| = 2A. Let us now relate A to the energy-per-bit. We
have

Eb =
∫ Tb

0
s21(t)dt =

∫ Tb

0
s22(t)dt =

∫ Tb

0
A2g2(t) cos2(2πfct)dt = A2 (6.5)

from (5.56). Thus, the signal constellation for BPSK in terms of energy-per-bit is given by s0 =
√
Eb and

s1 = −√
Eb. This yields the minimum distance dmin = 2A = 2

√
Eb. Substituting this into (6.4) yields

Pb = Q

(
2
√
Eb√

2N0

)
= Q

(√
2Eb
N0

)
= Q(

√
2γb). (6.6)
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QPSK modulation consists of BPSK modulation on both the in-phase and quadrature components
of the signal. With perfect phase and carrier recovery, the received signal components corresponding to
each of these branches are orthogonal. Therefore, the bit error probability on each branch is the same as
for BPSK: Pb = Q(

√
2γb). The symbol error probability equals the probability that either branch has a

bit error:
Ps = 1 − [1 −Q(

√
2γb)]2 (6.7)

Since the symbol energy is split between the in-phase and quadrature branches, we have γs = 2γb.
Substituting this into (6.7) yields Ps is terms of γs as

Ps = 1 − [1 −Q(
√
γs)]2. (6.8)

From Example 5.1.5, the union bound (5.40) on Ps for QPSK is

Ps ≤ 2Q(A/
√
N0) +Q(

√
2A/

√
N0). (6.9)

Writing this in terms of γs = 2γb = 2A2/N0 yields

Ps ≤ 2Q(
√
γs/2) +Q(

√
γs). (6.10)

The closed form bound (5.44) becomes

Ps ≤ 3
π

exp

[
−.5A2

N0

]
=

3
π

exp[−γs/4]. (6.11)

Using the fact that the minimum distance between constellation points is dmin =
√

2A2, we get the
nearest neighbor approximation

Ps ≈ 2Q



√
A2

N0


 = 2Q

(√
γs/2

)
. (6.12)

Note that with Gray encoding, we can approximate Pb from Ps by Pb ≈ Ps/2, since we have 2 bits per
symbol.

Example 6.1:
Find the bit error probability Pb and symbol error probability Ps of QPSK assuming γb = 7 dB. Com-
pare the exact Pb with the approximation Pb = Ps/2 based on the assumption of Gray coding. Finally,
compute Ps based on the nearest-neighbor bound using γs = 2γb, and compare with the exact Ps.

Solution: We have γb = 107/10 = 5.012, so

Pb = Q(
√

2γb) = Q(
√

10.024) = 7.726 ∗ 10−4.

The exact symbol error probability Ps is

Ps = 1 − [1 −Q(
√

2γb)]2 = 1 − [1 −Q(
√

10.02)]2 = 1.545 ∗ 10−3.

The bit-error-probability approximation assuming Gray coding yields Pb ≈ Ps/2 = 7.723 ∗ 10−4, which is
quite close to the exact Ps. The nearest neighbor approximation to Ps yields

Ps ≈ 2Q(
√
γs/2) = 2Q(

√
5.012) = 2.517 ∗ 10−2,
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which is more than an order of magnitude larger than the exact Ps. Thus, the nearest neighbor approxi-
mation can be quite loose.

6.1.3 Error Probability for MPSK

The signal constellation for MPSK has si1 = A cos[2π(i−1)
M ] and si2 = A sin[2π(i−1)

M ] for i = 1, . . . ,M . The
symbol energy is Es = A2, so γs = A2/N0. From (5.57), for the received vector x = rejθ represented
in polar coordinates, an error occurs if the ith signal constellation point is transmitted and θ 6∈ (2π(i−
1 − .5)/M, 2π(i − 1 + .5)/M). The joint distribution of r and θ can be obtained through a bivariate
transformation of the noise n1 and n2 on the in-phase and quadrature branches [4, Chapter 5.4], which
yields

p(r, θ) =
r

πN0
exp

[
− 1
N0

(
r2 − 2

√
Esr cos θ + 2E2

s

)]
. (6.13)

Since the error probability depends only on the distribution of θ, we can integrate out the dependence
on r, yielding

p(θ) =
∫ ∞

0
p(r, θ)dr =

1
π
e−2γs sin2(θ)

∫ ∞

0
zexp

[(
z −√2γs cos(θ)

)2
]
dz. (6.14)

By symmetry, the probability of error is the same for each constellation point. Thus, we can obtain Ps
from the probability of error assuming the constellation point s1 = (A, 0) is transmitted, which is

Ps = 1 −
∫ π/M

−π/M
p(θ)dθ = 1 −

∫ π/M

−pi/M
1
π
e−2γs sin2(θ)

∫ ∞

0
zexp

[(
z −√2γs cos(θ)

)2
]
dz. (6.15)

A closed-form solution to this integral does not exist for M > 4, and hence the exact value of Ps must
be computed numerically.

Each point in the MPSK constellation has two nearest neighbors at distance dmin =
√

2A2. Thus,
the nearest neighbor approximation (5.45) to Ps is given by

Ps ≈ 2Q(A/
√
N0) = 2Q(

√
γs). (6.16)

As shown in the prior example for QPSK, this nearest neighbor approximation can differ from the exact
value of Ps by more than an order of magnitude. However, it is much simpler to compute than the
numerical integration of (6.15) that is required to obtain the exact Ps. A tighter approximation for Ps
can be obtained by approximating p(θ) as

p(θ) ≈ √
γsπ cos(θ)e−γs sin2(θ). (6.17)

Using this approximation in the left hand side of (6.15) yields

Ps ≈ 2Q
(√

2γs sin(π/M)
)
. (6.18)

Example 6.2:
Compare the probability of bit error for 8PSK and 16PSK assuming γb = 15 dB and using the Ps
approximation given in (6.18) along with the approximations (6.3) and (6.2).
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Solution: From (6.2)we have that for 8PSK, γs = (log2 8) · 1015/10 = 94.87. Substituting this into (6.18)
yields

Ps ≈ 2Q
(√

189.74 sin(π/8)
)

= 1.355 · 10−7.

and using (6.3) we get Pb = Ps/3 = 4.52 · 10−8. For 16PSK we have γs = (log2 16) · 1015/10 = 126.49.
Substituting this into (6.18) yields

Ps ≈ 2Q
(√

252.98 sin(π/16)
)

= 1.916 · 10−3,

and using (6.3) we get Pb = Ps/4 = 4.79 · 10−4. Note that Pb is much larger for 16PSK than for 8PSK for
the same γb. This result is expected, since 16PSK packs more bits per symbol into a given constellation,
so for a fixed energy-per-bit the minimum distance between constellation points will be smaller.

The error probability derivation for MPSK assumes that the carrier phase is perfectly known at the
receiver. Under phase estimation error, the distribution of p(θ) used to obtain Ps must incorporate the
distribution of the phase rotation associated with carrier phase offset. This distribution is typically a
function of the carrier phase estimation technique and the SNR. The impact of phase estimation error on
coherent modulation is studied in [1, Appendix C] [2, Chapter 4.3.2][9, 10]. These works indicate that,
as expected, significant phase offset leads to an irreducible bit error probability. Moreover, nonbinary
signalling is more sensitive than BPSK to phase offset due to the resulting cross-coupling between the in-
phase and quadrature signal components. The impact of phase estimation error can be especially severe
in fast fading, where the channel phase changes rapidly due to constructive and destructive multipath
interference. Even with differential modulation, phase changes over and between symbol times can
produce irreducible errors [11]. Timing errors can also degrade performance: analysis of timing errors in
MPSK performance can be found in [2, Chapter 4.3.3][12].

6.1.4 Error Probability for MPAM and MQAM

The constellation for MPAM is Ai = (2i−1−M)d, i = 1, 2, . . . ,M . Each of the M−2 inner constellation
points of this constellation have two nearest neighbors at distance 2d. The probability of making an error
when sending one of these inner constellation points is just the probability that the noise exceeds d in
either direction: Ps(si) = p(|n| > d), i = 2, . . . ,M − 1. For the outer constellation points there is only
one nearest neighbor, so an error occurs if the noise exceeds d in one direction only: Ps(si) = p(n > d) =
.5p(|n| > d), i = 1,M . The probability of error is thus

Ps =
1
M

M∑
i=1

Ps(si) =
M − 2
M

2Q



√
d2

N0


+

2
M
Q



√
d2

N0


 =

2(M − 1)
M

Q



√

2d2

N0


 . (6.19)

From (5.54) the average energy per symbol for MPAM is

Es =
1
M

M∑
i=1

A2
i =

1
M

M∑
i=1

(2i− 1 −M)2d2 =
1
3
(M2 − 1)d2. (6.20)

Thus we can write Ps in terms of the average energy Es as

Ps =
2(M − 1)

M
Q


√ 6γs

M2 − 1


 . (6.21)
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Consider now MQAM modulation with a square signal constellation of size M = L2. This system can
be viewed as two MPAM systems with signal constellations of size L transmitted over the in-phase and
quadrature signal components, each with half the energy of the original MQAM system. The constellation
points in the in-phase and quadrature branches take values Ai = (2i − 1 − L)d, i = 1, 2, . . . , L. The
symbol error probability for each branch of the MQAM system is thus given by (6.21) with M replaced
by L =

√
M and γs equal to the average energy per symbol in the MQAM constellation:

Ps =
2(
√
M − 1)√
M

Q


√ 3γs

M − 1


 . (6.22)

Note that γs is multiplied by a factor of 3 in (6.22) instead of the factor of 6 in (6.21) since the MQAM
constellation splits its total average energy γs between its in-phase and quadrature branches. The prob-
ability of symbol error for the MQAM system is then

Ps = 1 −

1 − 2(

√
M − 1)√
M

Q


√ 3γs

M − 1




2

. (6.23)

The nearest neighbor approximation to probability of symbol error depends on whether the constellation
point is an inner or outer point. If we average the nearest neighbor approximation over all inner and
outer points, we obtain the MPAM probability of error associated with each branch:

Ps ≈ 2(
√
M − 1)√
M

Q


√ 3γs

M − 1


 , (6.24)

For nonrectangular constellations, it is relatively straightforward to show that the probability of
symbol error is upper bounded as

Ps ≤ 1 −

1 − 2Q


√ 3γs

M − 1




2

≤ 4Q


√ 3γs

M − 1


 . (6.25)

The nearest neighbor approximation for nonrectangular constellations is

Ps ≈Mdmin
Q

(
dmin√
2N0

)
, (6.26)

where Mdmin
is the largest number of nearest neighbors for any constellation point in the constellation

and dmin is the minimum distance in the constellation.

Example 6.3:
For 16QAM with γb = 15 dB (γs = log2M · γb), compare the exact probability of symbol error (6.23)
with the nearest neighbor approximation (6.24), and with the symbol error probability for 16PSK with
the same γb that was obtained in the previous example.

Solution: The average symbol energy γs = 4 · 101.5 = 126.49. The exact Ps is then given by

Ps = 1 −
(

1 − 2(4 − 1)
4

Q

(√
3 · 126.49

15

))2

= 7.37 · 10−7.
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The nearest neighbor approximation is given by

Ps ≈ 2(4 − 1)
4

Q

(√
3 · 126.49

15

)
= 3.68 · 10−7,

which differs by roughly a factor of 2 from the exact value. The symbol error probability for 16PSK in the
previous example is Ps ≈ 1.916 · 10−7, which is roughly four times larger than the exact Ps for 16QAM.
The larger Ps for MPSK versus MQAM with the same M and same γb is due to the fact that MQAM
uses both amplitude and phase to encode data, whereas MPSK uses just the phase. Thus, for the same
energy per symbol or bit, MQAM makes more efficient use of energy and thus has better performance.

The MQAM demodulator requires both amplitude and phase estimates of the channel so that the
decision regions used in detection to estimate the transmitted bit are not skewed in amplitude or phase.
The analysis of the performance degradation due to phase estimation error is similar to the case of
MPSK discussed above. The channel amplitude is used to scale the decision regions to corresond to the
transmitted symbol: this scaling is called Automatic Gain Control (AGC). If the channel gain is estimated
in error then the AGC improperly scales the received signal, which can lead to incorrect demodulation
even in the absence of noise. The channel gain is typically obtained using pilot symbols to estimate the
channel gain at the receiver. However, pilot symbols do not lead to perfect channel estimates, and the
estimation error can lead to bit errors. More details on the impact of amplitude and phase estimation
errors on the performance of MQAM modulation can be found in [15, Chapter 10.3][16].

6.1.5 Error Probability for FSK and CPFSK

Let us first consider the error probability of traditional binary FSK with the coherent demodulator of
Figure 5.24. Since demodulation is coherent, we can neglect any phase offset in the carrier signals. The
transmitted signal is defined by

si(t) = A
√

2Tb cos(2πfit), i = 1, 2. (6.27)

So Eb = A2 and γb = A2/N0. The input to the decision device is

z = x1 − x2. (6.28)

The device outputs a 1 bit if z > 0 and a 0 bit if z ≤ 0. Let us assume that s1(t) is transmitted, then

z|1 = A+ n1 − n2. (6.29)

An error occurs if z = A+ n1 − n2 ≤ 0. On the other hand, if s2(t) is transmitted, then

z|0 = n1 −A− n2, (6.30)

and an error occurs if z = n1 −A−n2 > 0. For n1 and n2 independent white Gaussian random variables
with mean zero and variance N0/2, their difference is a white Gaussian random variable with mean zero
and variance equal to the sum of variances N0/2 +N0/2 = N0. Then for equally likely bit transmissions,

Pb = .5p(A+ n1 − n2 ≤ 0) + .5p(n1 −A− n2 > 0) = Q(A/
√
N0) = Q(

√
γb). (6.31)
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The derivation of Ps for coherent M -FSK with M > 2 is more complex and does not lead to a closed-form
solution [Equation 4.92][2]. The probability of symbol error for noncoherent M -FSK is derived in [19,
Chapter 8.1] as

Ps =
M∑
m=1

(−1)m+1

(
M − 1
m

)
1

m+ 1
exp

[−mγs
m+ 1

]
. (6.32)

The error probability of CPFSK depends on whether the detector is coherent or noncoherent, and
also whether it uses symbol-by-symbol detection or sequence estimation. Analysis of error probability for
CPFSK is complex since the memory in the modulation requires error probability analysis over multiple
symbols. The formulas for error probability can also become quite complex. Detailed derivations of
error probability for these different CPFSK structures can be found in [1, Chapter 5.3]. As with linear
modulations, FSK performance degrades under frequency and timing errors. A detailed analysis of the
impact of such errors on FSK performance can be found in [2, Chapter 5.2][13, 14].

6.1.6 Error Probability Approximation for Coherent Modulations

Many of the approximations or exact values for Ps derived above for coherent modulation are in the
following form:

Ps(γs) ≈ αM Q
(√

βMγs
)
, (6.33)

where αM and βM depend on the type of approximation and the modulation type. In particular, the
nearest neighbor approximation has this form, where αM is the number of nearest neighbors to a constel-
lation at the minimum distance, and βM is a constant that relates minimum distance to average symbol
energy. In Table 6.1 we summarize the specific values of αM and βM for common Ps expressions for PSK,
QAM, and FSK modulations based on the derivations in the prior sections.

Performance specifications are generally more concerned with the bit error probability Pb as a function
of the bit energy γb. To convert from Ps to Pb and from γs to γb, we use the approximations (6.3) and
(6.2), which assume Gray encoding and high SNR. Using these approximations in (6.33) yields a simple
formula for Pb as a function of γb:

Pb(γb) = α̂M Q
(√

β̂Mγb

)
, (6.34)

where α̂M = αM/ log2M and β̂M = (log2M)βM for αM and βM in (6.33). This conversion is used below
to obtain Pb versus γb from the general form of Ps versus γs in (6.33).

6.1.7 Error Probability for Differential Modulation

The probability of error for differential modulation is based on the phase difference associated with the
phase comparator input of Figure 5.20. Specifically, the phase comparator extracts the phase of

z(k)z∗(k − 1) = A2ej(θ(k)−θ(k−1) +Aej(θ(k)+φ0)n∗(k − 1) +Ae−j(θ(k−1)+φ0)n(k) + n(k)n∗(k − 1) (6.35)

to determine the transmitted symbol. Due to symmetry, we can assume a given phase difference to
compute the error probability. Assuming a phase difference of zero, θ(k) − θ(k − 1) = 0, yields

z(k)z∗(k − 1) = A2 +Aej(θ(k)+φ0)n∗(k − 1) +Ae−j(θ(k−1)+φ0)n(k) + n(k)n∗(k − 1). (6.36)
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Modulation Ps(γs) Pb(γb)
BFSK: Pb = Q

(√
γb
)

BPSK: Pb = Q
(√

2γb
)

QPSK,4QAM: Ps ≈ 2 Q
(√
γs
)

Pb ≈ Q
(√

2γb
)

MPAM: Ps ≈ 2(M−1)
M Q

(√
6γs
M2−1

)
Pb ≈ 2(M−1)

M log2M
Q
(√

6γb log2M
(M2−1)

)
MPSK: Ps ≈ 2Q

(√
2γs sin(π/M)

)
Pb ≈ 2

log2M
Q
(√

2γb log2M sin(π/M)
)

Rectangular MQAM: Ps ≈ 2(
√
M−1)√
M

Q

(√
3γs
M−1

)
Pb ≈ 2(

√
M−1)√

M log2M
Q
(√

3γb log2M
(M−1)

)
Nonrectangular MQAM: Ps ≈ 4Q

(√
3γs
M−1

)
Pb ≈ 4

log2M
Q
(√

3γb log2M
(M−1)

)

Table 6.1: Approximate Symbol and Bit Error Probabilities for Coherent Modulations

Next we define new random variables ñ(k) = n(k)e−j(θ(k−1)+φ0) and ñ(k − 1) = n(k − 1)e−j(θ(k)+φ0),
which have the same statistics as n(k) and n(k − 1). Then we have

z(k)z∗(k − 1) = A2 +A(ñ∗(k − 1) + ñ(k)) + ñ(k)ñ∗(k − 1). (6.37)

There are three terms in (6.37): the first term with the desired phase difference of zero, and the second
and third terms, which contribute noise. At reasonable SNRs the third noise term is much smaller than
the second, so we neglect it. Dividing the remaining terms by A yields

z̃ = A+ <{ñ∗(k − 1) + ñ(k)} + j={ñ∗(k − 1) + ñ(k)}. (6.38)

Let us define x = <{z̃} and y = ={z̃}. The phase of z̃ is thus given by

θz̃ = tan−1 y

x
. (6.39)

Given that the phase difference was zero, and error occurs if |θz̃| ≥ π/M . Determining p(|θz̃| ≥ π/M) is
identical to the case of coherent PSK, except that from (6.38) we see that we have two noise terms instead
of one, and therefore the noise power is twice that of the coherent case. This will lead to a performance
of differential modulation that is roughly 3 dB worse than that of coherent modulation.

In DPSK modulation we need only consider the in-phase branch of Figure 5.20 to make a decision, so
we set x = <{z̃} in our analysis. In particular, assuming a zero is transmitted, if x = A+<{ñ∗(k− 1) +
ñ(k)} < 0 then a decision error is made. This probability can be obtained by finding the characteristic
or moment-generating function for x, taking the inverse Laplace transform to get the distribution of x,
and then integrating over the decision region x < 0. This technique is very general and can be applied
to a wide variety of different modulation and detection types in both AWGN and fading [19, Chapter
1.1]: we will use it later to compute the average probability of symbol error for linear modulations in
fading both with and without diversity. In DPSK the characteristic function for x is obtained using the
general quadratic form of complex Gaussian random variables [1, Appendix B][18, Appendix B], and the
resulting bit error probability is given by

Pb =
1
2
e−γb . (6.40)
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For DQPSK the characteristic function for z̃ is obtained in [1, Appendix C], which yields the bit error
probability

Pb ≈
∫ ∞

b
x exp

(
−(a2 + x2)

2

)
I0(ax)dx− 1

2
exp

(
−(a2 + b2)

2

)
I0(ab), (6.41)

where a ≈ .765
√
γb and b ≈ 1.85

√
γb.

6.2 Alternate Q Function Representation

In (6.33) we saw that Ps for many coherent modulation techniques in AWGN is approximated in terms of
the Gaussian Q function. Recall that Q(z) is defined as the probability that a Gaussian random variable
x with mean zero and variance one exceeds the value z, i.e.

Q(z) = p(x ≥ z) =
∫ ∞

z

1√
2π
e−x

2/2dx. (6.42)

The Q function is not that easy to work with since the argument z is in the lower limit of the integrand,
the integrand has infinite range, and the exponential function in the integral doesn’t lead to a closed form
solution.

In 1991 an alternate representation of the Q function was obtained by Craig [5]. The alternate form
is given by

Q(z) =
1
π

∫ π/2

0
exp

[
−z2

2 sin2 φ

]
dφ. (6.43)

This representation can also be deduced from the work of Weinstein [6] or Pawula et al. [7]. Note that in
this alternate form, the integrand is over a finite range that is independent of the function argument z,
and the integral is Gaussian with respect to z. These features will prove important in using the alternate
representation to derive average error probability in fading.

Craig’s motivation for deriving the alternate representation was to simplify the probability of error
calculation for AWGN channels. In particular, we can write the probability of bit error for BPSK using
the alternate form as

Pb = Q(
√

2γb) =
1
π

∫ π/2

0
exp

[ −γb
sin2 φ

]
dφ. (6.44)

Similarly, the alternate representation can be used to obtain a simple exact formula for Ps of MPSK in
AWGN as [5]

Ps =
1
π

∫ (M−1)π/M

0
exp

[−gpskγs
sin2 φ

]
dφ, (6.45)

where gpsk = sin2(π/M). Note that this formula does not correspond to the general form αMQ(
√
βMγs),

since the general form is an approximation while (6.45) is exact. Note also that (6.45) is obtained via a
finite range integral of simple trigonometric functions that is easily computed via a numerical computer
package or calculator.

6.3 Fading

In AWGN the probability of symbol error depends on the received SNR or, equivalently, on γs. In a
fading environment the received signal power varies randomly over distance or time due to shadowing
and/or multipath fading. Thus, in fading γs is a random variables with distribution pγs(γ), and therefore
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Ps(γs) is also random. The performance metric for γs random depends on the rate of change of the fading.
There are three different performance criteria that can be used to characterize the random variable Ps:

• The outage probability, Pout, defined as the probability that γs falls below a given value correspond-
ing to the maximum allowable Ps.

• The average error probability, Ps, averaged over the distribution of γs.

• Combined average error probability and outage, defined as the average error probability that can
be achieved some percentage of time or some percentage of spatial locations.

The average probability of symbol error applies when the signal fading is on the order of a symbol
time (Ts ≈ Tc), so that the signal fade level is constant over roughly one symbol time. Since many error
correction coding techniques can recover from a few bit errors, and end-to-end performance is typically
not seriously degraded by a few simultaneous bit errors, the average error probability is a reasonably
good figure of merit for the channel quality under these conditions.

However, if the signal power is changing slowly (Ts << Tc), then a deep fade will affect many simul-
taneous symbols. Thus, fading may lead to large error bursts, which cannot be corrected for with coding
of reasonable complexity. Therefore, these error bursts can seriously degrade end-to-end performance.
In this case acceptable performance cannot be guaranteed over all time or, equivalently, throughout a
cell, without drastically increasing transmit power. Under these circumstances, an outage probability is
specified so that the channel is deemed unusable for some fraction of time or space. Outage and average
error probability are often combined when the channel is modeled as a combination of fast and slow
fading, e.g. log-normal shadowing with fast Rayleigh fading.

Note that when Tc << Ts, the fading will be averaged out by the matched filter in the demodulator.
Thus, for very fast fading, performance is the same as in AWGN.

6.3.1 Outage Probability

The outage probability relative to γ0 is defined as

Pout = p(γs < γ0) =
∫ γ0

0
pγs(γ)dγ, (6.46)

where γ0 typically specifies the minimum SNR required for acceptable performance. For example, if we
consider digitized voice, Pb = 10−3 is an acceptable error rate since it generally can’t be detected by the
human ear. Thus, for a BPSK signal in Rayleigh fading, γb < 7 dB would be declared an outage, so we
set γ0 = 7 dB.

In Rayleigh fading the outage probability becomes

Pout =
∫ γ0

0

1
γs
e−γs/γsdγs = 1 − e−γ0/γs . (6.47)

Inverting this formula shows that for a given outage probability, the required average SNR γs is

γs =
γ0

− ln(1 − Pout)
. (6.48)

In dB this means that 10 log γs must exceed the target 10 log γ0 by Fd = −10 log[− ln(1 − Pout)] to
maintain acceptable performance more than 100 ∗ (1 − Pout) percent of the time. The quantity Fd is
typically called the dB fade margin.
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Example 6.4: Determine the required γb for BPSK modulation in slow Rayleigh fading such that 95%
of the time (or in space), Pb(γb) < 10−4.

Solution: For BPSK modulation in AWGN the target BER is obtained at 8.5 dB, i.e. for Pb(γb) =
Q(

√
2γb), Pb(10.85) = 10−4. Thus, γ0 = 8.5 dB. Since we want Pout = p(γb < γ0) = .05 we have

γb =
γ0

− ln(1 − Pout)
=

10.85

− ln(1 − .05)
= 21.4 dB. (6.49)

6.3.2 Average Probability of Error

The average probability of error is used as a performance metric when Ts ≈ Tc. Thus, we can assume
that γs is roughly constant over a symbol time. Then the averaged probability of error is computed by
integrating the error probability in AWGN over the fading distribution:

P s =
∫ ∞

0
Ps(γ)pγs(γ)dγ, (6.50)

where Ps(γ) is the probability of symbol error in AWGN with SNR γ, which can be approximated by
the expressions in Table 6.1. For a given distribution of the fading amplitude r (i.e. Rayleigh, Rician,
log-normal, etc.), we compute pγs(γ) by making the change of variable

pγs(γ)dγ = p(r)dr. (6.51)

For example, in Rayleigh fading the received signal amplitude r has the Rayleigh distribution

p(r) =
r

σ2
e−r

2/2σ2
, r ≥ 0, (6.52)

and the signal power is exponentially distributed with mean 2σ2. The SNR per symbol for a given
amplitude r is

γ =
r2Ts
2σ2

n

, (6.53)

where σ2
n = N0/2 is the PSD of the noise in the in-phase and quadrature branches. Differentiating both

sides of this expression yields

dγ =
rTs
σ2
n

dr. (6.54)

Substituting (6.53) and (6.54) into (6.52) and then (6.51) yields

pγs(γ) =
Tsσ

2
n

σ2
e−γTsσ2

n/σ
2
. (6.55)

Since the average SNR per symbol γs is just σ2/(Tsσ2
n), we can rewrite (6.55) as

pγs(γ) =
1
γs
e−γ/γs , (6.56)
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which is exponential. For binary signaling this reduces to

pγb
(γ) =

1
γb
e−γ/γb , (6.57)

Integrating (6.6) over the distribution (6.57) yields the following average probability of error for
BPSK in Rayleigh fading.

BPSK: P b =
1
2

[
1 −

√
γb

1 + γb

]
≈ 1

4γb
, (6.58)

where the approximation holds for large γb. A similar integration of (6.31) over (6.57) yields the average
probability of error for binary FSK in Rayleigh fading as

Binary FSK: P b =
1
2

[
1 −

√
γb

2 + γb

]
≈ 1

4γb
. (6.59)

Thus, the performance of BPSK and binary FSK converge at high SNRs. For noncoherent modulation,
if we assume the channel phase is relatively constant over a symbol time, then we obtain the probability
of error by again integrating the error probability in AWGN over the fading distribution. For DPSK this
yields

DPSK: P b =
1

2(1 + γb)
≈ 1

2γb
, (6.60)

where again the approximation holds for large γb. Note that in the limit of large γb, there is an approxi-
mate 3 dB power penalty in using DPSK instead of BPSK. This was also observed in AWGN, and is the
power penalty of differential detection. In practice the power penalty is somewhat smaller, since DPSK
can correct for slow phase changes introduced in the channel or receiver, which are not taken into account
in these error calculations.

If we use the general approximation Ps ≈ αMQ(
√
βMγs) then the average probability of symbol error

in Rayleigh fading can be approximated as

P s ≈
∫ ∞

0
αMQ(

√
βMγ) · 1

γs
e−γ/γsdγs. =

αm
2

[
1 −

√
.5βMγs

1 + .5βMγs

]
. (6.61)

It is interesting to compare bit error probability of the different modulation schemes in AWGN and
fading. For binary PSK, FSK, and DPSK, the bit error probability in AWGN decreases exponentially
with increasing γb. However, in fading the bit error probability for all the modulation types decreases
just linearly with increasing γb. Similar behaivor occurs for nonbinary modulation. Thus, the power
necessary to maintain a given Pb, particularly for small values, is much higher in fading channels than
in AWGN channels. For example, in Figure 6.1 we plot the error probability of BPSK in AWGN and
in flat Rayleigh fading. We see that it requires approximately 8 dB SNR to maintain a 10−3 bit error
rate in AWGN while it requires approximately 24 dB SNR to maintain the same error rate in fading.
A similar plot for the error probabilities of MQAM, based on the approximations (6.24) and (6.61), is
shown in Figure 6.2. From these figures it is clear that to maintain low power requires some technique
to remove the effects of fading. We will discuss some of these techniques, including diversity combining,
spread spectrum, and RAKE receivers, in later chapters.

Rayleigh fading is one of the worst-case fading scenarios. In Figure 6.3 we show the average bit error
probability of BPSK in Nakagami fading for different values of the Nakagami-m parameter. We see that
as m increases, the fading decreases, and the average bit error probability converges to that of an AWGN
channel.
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Figure 6.1: Average Pb for BPSK in Rayleigh Fading and AWGN.

6.3.3 Moment Generating Function Approach to Average Error Probability

The moment generating function (MGF) for a nonnegative random variable γ with pdf pγ(γ), γ ≥ 0,
is defined as

Mγ(s) =
∫ ∞

0
pγ(γ)esγdγ. (6.62)

Note that this function is just the Laplace transform of the pdf pγ(γ) with the argument reversed in sign:
L[pγ(γ)] = Mγ(−s). Thus, the MGF for most fading distributions of interest can be computed either in
closed-form using classical Laplace transforms or through numerical integration. In particular, the MGF
for common multipath fading distributions are as follows [19, Chapter 5.1].

Rayleigh:
Mγs(s) = (1 − sγs)

−1. (6.63)

Ricean with factor K:

Mγs(s) =
1 +K

1 +K − sγs
exp

[
Ksγs

1 +K − sγs

]
. (6.64)

Nakagami-m:

Mγs(s) =
(

1 − sγs
m

)−m
. (6.65)

As indicated by its name, the moments E[γn] of γ can be obtained from Mγ(s) as

E[γn] =
∂n

∂sn
[Mγs(s)|s=0 . (6.66)

The MGF is a very useful tool in performance analysis of modulation in fading both with and without
diversity. In this section we discuss how it can be used to simplify performance analysis of average
probability of symbol error in fading. In the next chapter we will see that it also greatly simplifies
analysis in fading channels with diversity.
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Figure 6.2: Average Pb for MQAM in Rayleigh Fading and AWGN.
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Figure 6.3: Average Pb for BPSK in Nakagami Fading.

The basic premise of the MGF approach for computing average error probability in fading is to
express the probability of error Ps in AWGN for the modulation of interest either as an exponential
function of γs,

Ps = c1 exp[−c2γs] (6.67)

for constants c1 and c2, or as a finite range integral of such an exponential function:

Ps =
∫ B

A
c1 exp[−c2(x)γ]dx, (6.68)

where the constant c2(x) may depend on the integrand but the SNR γ does not and is not in the limits
of integration either. These forms allow the average probability of error to be expressed in terms of the
MGF for the fading distribution. Specifically, if Ps = α exp[−βγs], then

P s =
∫ ∞

0
c1 exp[−c2γ]pγs(γ)dγ = c1Mγs(−c2). (6.69)
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Since DPSK is in this form with c1 = 1/2 and c2 = 1, we see that the average probability of bit error for
DPSK in any type of fading is

P b =
1
2
Mγs(−1), (6.70)

where Mγs(s) is the MGF of the fading distribution. For example, using Mγs(s) for Rayleigh fading
given by (6.63) with s = −1 yields P b = [2(1 + γb)]−1, which is the same as we obtained in (6.60). If Ps
is in the integral form of (6.68) then

P s =
∫ ∞

0

∫ B

A
c1 exp[−c2(x)γ]dxpγs(γ)dγ = c1

∫ B

A

[∫ ∞

0
exp[−c2(x)γ]pγs(γ)dγ

]
dx = c1

∫ B

A
Mγs(−c2(x))dx.

(6.71)
In this latter case, the average probability of symbol error is a single finite-range integral of the MGF of
the fading distribution, which can typically be found in closed form or easily evaluated numerically.

Let us now apply the MGF approach to specific modulations and fading distributions. In (6.33) we
gave a general expression for Ps of coherent modulation in AWGN in terms of the Gaussian Q function.
We now make a slight change of notation in (6.33) setting α = αM and g = .5βM to get

Ps(γs) = αQ(
√

2gγs), (6.72)

where α and g are constants that depend on the modulation. The notation change is to obtain the error
probability as an exact MGF, as we now show.

Using the alternate Q function representation (6.43), we get that

Ps =
α

π

∫ π/2

0
exp

[ −gγ
sin2 φ

]
dφ, (6.73)

which is in the desired form (6.68). Thus, the average error probability in fading for modulations with
Ps = αQ(

√
2gγs) in AWGN is given by

P s =
α

π

∫ ∞

0

∫ π/2

0
exp

[ −gγ
sin2 φ

]
dφpγs(γ)dγ

=
α

π

∫ π/2

0

[∫ ∞

0
exp

[ −gγ
sin2 φ

]
pγs(γ)dγ

]
dφ =

α

π

∫ π/2

0
Mγs

( −g
sin2 φ

)
dφ, (6.74)

where Mγs(s) is the MGF associated with the pdf pγs(γ) as defined by (6.62). Recall that Table 6.1
approximates the error probability in AWGN for many modulations of interest as Ps ≈ αQ(

√
2gγs),

and thus (6.74) gives an approximation for the average error probability of these modulations in fading.
Moreover, the exact average probability of symbol error for coherent MPSK can be obtained in a form
similar to (6.74) by noting that Craig’s formula for Ps of MPSK in AWGN given by (6.45) is in the
desired form (6.68). Thus, the exact average probability of error for MPSK becomes

P s =
∫ ∞

0

1
π

∫ (M−1)π/M

0
exp

[−gγs
sin2 φ

]
dφpγs(γ)dγ

=
1
π

∫ (M−1)π
M

0

[∫ ∞

0
exp

[−gγs
sin2 φ

]
pγs(γ)dγ

]
dφ =

1
π

∫ (M−1)π
M

0
Mγs

(
− g

sin2 φ

)
dφ, (6.75)

where g = sin2(π/M) depends on the size of the MPSK constellation. The MGF Mγs(s) for Rayleigh,
Rician, and Nakagami-m distributions were given, respectively, by (6.63), (6.64), and (6.65) above. Sub-
stituting s = −g/ sin2 φ in these expressions yields
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Rayleigh:

Mγs

(
− g

sin2 φ

)
=
(

1 +
g γs
sin2 φ

)−1

. (6.76)

Ricean with factor K:

Mγs

(
− g

sin2 φ

)
=

(1 +K) sin2 φ

(1 +K) sin2 φ+ g γs
exp

(
− K g γs

(1 +K) sin2 φ+ g γs

)
. (6.77)

Nakagami-m:

Mγs

(
− g

sin2 φ

)
=
(

1 +
g γs

m sin2 φ

)−m
. (6.78)

All of these functions are simple trigonometrics and are therefore easy to integrate over the finite
range in (6.74) or (6.75).

Example 6.5: Use the MGF technique to find an expression for the average probability of error for BPSK
modulation in Nakagami fading.

Solution: We use the fact that for an AWGN channel BPSK has Pb = Q(
√

2γb), so α = 1 and g = 1 in
(6.72). The moment generating function for Nakagami-m fading is given by (6.78), and substituting this
into (6.74) with α = g = 1 yields

P b =
1
π

∫ π/2

0

(
1 +

γb
m sin2 φ

)−m
dφ.

From (6.23) we see that the exact probability of symbol error for MQAM in AWGN contains both the
Q function and its square. Fortunately, an alternate form of Q2(z) derived in [8] allows us to apply the
same techniques used above for MPSK to MQAM modulation. Specifically, an alternate representation
of Q2(z) is derived in [8] as

Q2(z) =
1
π

∫ π/4

0
exp

[
−z2

2 sin2 φ

]
dφ. (6.79)

Note that this is identical to the alternate representation for Q(z) given in (6.43) except that the upper
limit of the integral is π/4 instead of π/2. Thus we can write (6.23) in terms of the alternate represen-
tations for Q(z) and Q2(z) as

Ps(γs) =
4
π

(
1 − 1√

M

)∫ π/2

0
exp

(
− gγs

sin2 φ

)
dφ− 4

π

(
1 − 1√

M

)2 ∫ π/4

0
exp

(
− gγs

sin2 φ

)
dφ, (6.80)

where g = 1.5/(M−1) is a function of the size of the MQAM constellation. Then the average probability
of symbol error in fading becomes

P s =
∫ ∞

0
Ps(γ)pγs(γ)dγ

=
4
π

(
1 − 1√

M

)∫ π/2

0

∫ ∞

0
exp

(
− gγ

sin2 φ

)
pγs(γ)dγdφ− 4

π

(
1 − 1√

M

)2 ∫ π/4

0

∫ ∞

0
exp

(
− gγ

sin2 φ

)
pγs(γ)dγdφ

=
4
π

(
1 − 1√

M

) ∫ π/2

0
Mγs

(
− g

sin2 φ

)
dφ− 4

π

(
1 − 1√

M

)2 ∫ π/4

0
Mγs

(
− g

sin2 φ

)
dφ. (6.81)
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Thus, the exact average probability of symbol error is obtained via two finite-range integrals of the MGF
of the fading distribution, which can typically be found in closed form or easily evaluated numerically.

The MGF approach can also be applied to noncoherent and differential modulations. For example,
consider noncoherent M -FSK, with Ps in AWGN given by (6.32), which is a finite sum of the desired
form (6.67). Thus, in fading, the average symbol error probability of noncoherent M -FSK is given by

P s =
∫ ∞

0

M∑
m=1

(−1)m+1

(
M − 1
m

)
1

m+ 1
exp

[ −mγ
m+ 1

]
pγs(γ)dγ

=
M∑
m=1

(−1)m+1

(
M − 1
m

)
1

m+ 1

[∫ ∞

0
exp

[ −mγ
m+ 1

]
pγs(γ)dγ

]

=
M∑
m=1

(−1)m+1

(
M − 1
m

)
1

m+ 1
Mγs

(
− m

m+ 1

)
. (6.82)

Finally, for differential MPSK, it can be shown [11] that the average probability of symbol error is given
by

Ps =
√
gpsk

2π

∫ π/2

−π/2
exp[−γs(1 −√1 − gpsk cos θ)]

1 −√1 − gpsk cos θ
dθ (6.83)

for gpsk = sin2(π/M), which is in the desired form (6.68). Thus we can express the average probability
of symbol error in terms of the MGF of the fading distribution as

P s =
√
gpsk

2π

∫ π/2

−π/2
Mγs

(−(1 −√1 − gpsk cos θ)
)

1 −√1 − gpsk cos θ
dθ. (6.84)

A more extensive discussion of the MGF technique for finding average probability of symbol error for
different modulations and fading distributions can be found in [19, Chapter 8.2].

6.3.4 Combined Outage and Average Error Probability

When the fading environment is a superposition of both fast and slow fading, i.e. log-normal shadowing
and Rayleigh fading, a common performance metric is combined outage and average error probability,
where outage occurs when the slow fading falls below some target value and the average performance in
nonoutage is obtained by averaging over the fast fading. We use the following notation:

• Let γs denote the average SNR per symbol due to shadowing and path loss.

• Let γs denote the (random) SNR per symbol due to shadowing and path loss with average value
γs.

• Let γs denote the random SNR due to path loss, shadowing, and multipath.

With this notation we can specify an average error probability P s with some probability 1 − Pout. An
outage is declared when the received SNR per symbol due to shadowing and path loss alone, γs, falls
below a given target value γs0 . When not in outage (γs ≥ γs0), the average probability of error is obtained
by averaging over the distribution of the fast fading conditioned on the mean SNR:

P s =
∫ ∞

0
Ps(γs)p(γs|γs)dγs. (6.85)
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The criterion used to determine the outage target γs0 is typically based on a given maximum average
probability of error, i.e. P s ≤ P s0 , where the target γs0 must then satisfy

P s0 =
∫ ∞

0
Ps(γs)p(γs|γs0)dγs. (6.86)

Clearly whenever γs > γs0 , the average error probability will be below the target value.

Example 6.6:
Consider BPSK modulation in a channel with both log-normal shadowing (σ = 8 dB) and Rayleigh

fading. The desired maximum average error probability is P b0 = 10−4, which requires γb0 = 34 dB.
Determine the value of γb that will insure P b ≤ 10−4 with probability 1 − Pout = .95.

Solution: We must find γb, the average of γb in both the fast and slow fading, such that p(γb > γb0) =
1 − Pout. For log-normal shadowing we compute this as:

p(γb > 34) = p

(
γb − γb
σ

≥ 34 − γb
σ

)
= Q

(
34 − γb
σ

)
= 1 − Pout, (6.87)

since (γb − γb)/σ is a Gauss-distributed random variable with mean zero and standard deviation one.
Thus, the value of γb is obtained by substituting the values of Pout and σ in (6.87) and using a
table of Q functions or an inversion program, which yields (34 − γb)/8 = −1.6 or γb = 46.8 dB.

6.4 Doppler Spread

Doppler spread results in an irreducible error floor for modulation techniques using differential detection.
This is due to the fact that in differential modulation the signal phase associated with one symbol is used
as a phase reference for the next symbol. If the channel phase decorrelates over a symbol, then the phase
reference becomes extremely noisy, leading to a high symbol error rate that is independent of received
signal power. The phase correlation between symbols and therefore the degradation in performance are
functions of the Doppler frequency fD = v/λ and the symbol time Ts.

The first analysis of the irreducible error floor due to Doppler was done by Bello and Nelin in [17].
In that work analytical expressions for the irreducible error floor of noncoherent FSK and DPSK due
to Doppler are determined for a Gaussian Doppler power spectrum. However, these expressions are not
in closed-form, so must be evaluated numerically. Closed-form expressions for the bit error probability
of DPSK in fast Rician fading, where the channel decorrelates over a bit time, can be obtained using
the MGF technique, with the MGF obtained based on the general quadratic form of complex Gaussian
random variables [18, Appendix B] [1, Appendix B]. A different approach utilizing alternate forms of the
Marcum Q function can also be used [19, Chapter 8.2.5]. The resulting average bit error probability for
DPSK is

P b =
1
2

[
1 +K + γb(1 − ρC)

1 +K + γb

]
exp

(
− Kγb

1 +K + γb

)
, (6.88)

where ρC is the channel correlation coefficient after a bit time Tb, K is the fading parameter of the Rician
distribution, and γb is the average SNR per bit. For Rayleigh fading (K = 0) this simplifies to

P b =
1
2

[
1 + γb(1 − ρC)

1 + γb

]
. (6.89)
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Letting γb → ∞ in (6.88) yields the irreducible error floor:

DPSK: P floor =
(1 − ρC)e−K

2
. (6.90)

A similar approach is used in [20] to bound the bit error probability of DQPSK in fast Rician fading as

Pb ≤ 1
2


1 −

√√√√ (ρCγs/
√

2)2

(γs + 1)2 − (ρCγs/
√

2)2


 exp

[
− (2 −√

2)Kγs/2
(γs + 1) − (ρCγs/

√
2)

]
, (6.91)

where K is as before, ρC is the signal correlation coefficient after a symbol time Ts, and γs is the average
SNR per symbol. Letting γs → ∞ yields the irreducible error floor:

DQPSK: P floor =
1
2


1 −

√√√√ (ρC/
√

2)2

1 − (ρC/
√

2)2


 exp

[
−(2 −√

2)(K/2)
1 − ρC/

√
2

]
. (6.92)

As discussed in Chapter 3.2.1, the channel correlation AC(t) over time t equals the inverse Fourier
transform of the Doppler power spectrum SC(f) as a function of Doppler frequency f . The correlation
coefficient is thus ρC = AC(T )/AC(0) evaluated at T = Ts for DQPSK or T = Tb for DPSK. Table 6.2,
from [21], gives the value of ρC for several different Doppler power spectra models, where BD is the
Doppler spread of the channel. Assuming the uniform scattering model (ρC = J0(2πfDTb)) and Rayleigh
fading (K = 0) in (6.90) yields an irreducible error for DPSK of

Pfloor =
1 − J0(2πfDTb)

2
≈ .5(πfDTb)2, (6.93)

where BD = fD = v/λ is the maximum Doppler in the channel. Note that in this expression, the error
floor decreases with data rate R = 1/Tb. This is true in general for irreducible error floors of differential
modulation due to Doppler, since the channel has less time to decorrelated between transmitted symbols.
This phenomenon is one of the few instances in digital communications where performance improves as
data rate increases.

Type Doppler Power Spectrum SC(f) ρC = AC(T )/AC(0)
Rectangular S0

2BD
, |f | < BD sinc(2BDT )

Gaussian S0√
πBD

e−f2/B2
D e−(πBDT )2

Uniform Scattering S0

π
√
B2

D−f2
, |f | < BD J0(2πBDT )

1st Order Butterworth S0BD

π(f2+B2
D

) e−2πBDT

Table 6.2: Correlation Coefficients for Different Doppler Power Spectra Models.

A plot of (6.88), the error probability of DPSK in fast Rician fading, for uniform scattering (ρC =
J0(2πfDTb)) and different values of fDTb is shown in Figure 6.4. We see from this figure that the error
floor starts to dominate at γb = 15 dB in Rayleigh fading (K = 0), and as K increases the value of γb
where the error floor dominates also increases. We also see that increasing the data rate Rb = 1/Tb by
an order of magnitude increases the error floor by roughly two orders of magnitude.
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Figure 6.4: Average Pb for DPSK in Fast Rician Fading with Uniform Scattering.

Example 6.7:
Assume a Rayleigh fading channel with uniform scattering and a maximum Doppler of fD = 80 Hertz.
For what approximate range of data rates will the irreducible error floor of DPSK be below 10−4.

Solution: We have Pfloor ≈ .5(πfDTb)2 < 10−4. Solving for Tb with fD = 80 Hz, we get

Tb <

√
2 · 10−4

π · 80
= 5.63 · 10−5,

which yields R > 17.77 Kbps.

Deriving analytical expressions for the irreducible error floor becomes intractable with more complex
modulations, in which case simulations are often used. In particular, simulatons of the irreducible error
floor for π/4 DQPSK with square root raised cosine filtering have been conducted since this modulation
is used in the IS-54 TDMA standard [22, 23]. These simulation results indicate error floors between 10−3

and 10−4. Surprisingly, in these simulations the error floor increases with vehicle speed, despite the fact
that at higher vehicle speeds, the channel decorrelates less over a symbol time.

6.5 Intersymbol Interference

Frequency-selective fading give rise to ISI, where the received symbol over a given symbol period expe-
riences interference from other symbols that have been delayed by multipath. Since increasing signal
power also increases the power of the ISI, this interference gives rise to an irreducible error floor that is
independent of signal power. The irreducible error floor is difficult to analyze, since it depends on the
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ISI characteristics and the modulation format, and the ISI characteristics depend on the characteristics
of the channel and the sequence of transmitted symbols.

The first extensive analysis of ISI degradation to symbol error probability was done by Bello and Nelin
[24]. In that work analytical expressions for the irreducible error floor of coherent FSK and noncoherent
DPSK are determined assuming a Gaussian delay profile for the channel. To simplify the analysis, only ISI
associated with adjacent symbols was taken into account. Even with this simplification, the expressions
are very complex and must be approximated for evaluation. The irreducible error floor can also be
evaluated analytically based on the worst-case sequence of transmitted symbols or it can be averaged
over all possible symbol sequences [25, Chapter 8.2]. These expressions are also complex to evaluate due
to their dependence on the channel and symbol sequence characteristics. An approximation to symbol
error probability with ISI can be obtained by treating the ISI as uncorrelated white Gaussian noise [28].
Then the SNR becomes

γ̂s =
Pr

N0B + I
, (6.94)

where I is the power associated with the ISI. In a static channel the resulting probability of symbol error
will be Ps(γ̂s) where Ps is the probability of symbol error in AWGN. If both the transmitted signal and
the ISI experience flat-fading, then γ̂s will be a random variable with a distribution p(γ̂s), and the average
symbol error probability is then P s =

∫
Ps(γ̂s)p(γ̂s). Note that γ̂s is the ratio of two random variables:

the received power Pr and the ISI power I, and thus the resulting distribution p(γ̂s) may be hard to
obtain or not in closed form.

Irreducible error floors due to ISI are often obtained by simulation, which can easily incorporate
different channel models, modulation formats, and symbol sequence characteristics [26, 28, 27, 22, 23].
The most extensive simulations for determining irreducible error floor due to ISI were done by Chuang
in [26]. In this work BPSK, DPSK, QPSK, OQPSK and MSK modulations were simulated for different
pulse shapes and for channels with different power delay profiles, including a Gaussian, exponential, equal-
amplitude two-ray, and empirical power delay profile. The results of [26] indicate that the irreducible error
floor is more sensitive to the rms delay spread of the channel than to the shape of its power delay profile.
Moreover, pulse shaping can significantly impact the error floor: in the raised cosine pulses discussed in
Chapter 5.5, increasing β from zero to one can reduce the error floor by over an order of magnitude. An
example of Chuang’s simulation results is shown in Figure 6.5. This figure plots the irreducible bit error
rate as a function of normalized rms delay spread d = σTm/Ts for BPSK, QPSK, OQPSK, and MSK
modulation assuming a static channel with a Gaussian power delay profile. We see from this figure that
for all modulations, we can approximately bound the irreducible error floor as Pfloor ≤ d2 for .02 ≤ d ≤ .1.
Other simulation results support this bound as well [28]. This bound imposes severe constraints on data
rate even when symbol error probabilities on the order of 10−2 are acceptable. For example, the rms delay
spread in a typical urban environment is approximately σTm = 2.5µsec. To keep σTm < .1Ts requires
that the data rate not exceed 40 Kbaud, which generally isn’t enough for high-speed data applications.
In rural environments, where multipath is not attenuated to the same degree as in cities, σTm ≈ 25µsec,
which reduces the maximum data rate to 4 Kbaud.

Example 6.8:
Using the approximation Pfloor ≤ (σTm/Ts)

2, find the maximum data rate that can be transmitted
through a channel with delay spread σTm = 3µ sec using either BPSK or QPSK modulation such that
the probability of bit error Pb is less than 10−3.
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Figure 6.5: Irreducible error versus normalized rms delay spread d = σTm/Ts for Gaussian power delay
profile (from [26] c©IEEE).

Solution: For BPSK, we set Pfloor = (σTm/Tb)
2, so we require Tb ≥ σTm/

√
Pfloor = 94.87µsecs,

which leads to a data rate of R = 1/Tb = 10.54 Kbps. For QPSK, the same calculation yields
Ts ≥ σTm/

√
Pfloor = 94.87µsecs. Since there are 2 bits per symbol, this leads to a data rate of

R = 2/Ts = 21.01 Kbps. This indicates that for a given data rate, QPSK is more robust to ISI than
BPSK, due to that fact that its symbol time is slower. This result is also true using the more accurate
error floors associated with Figure 6.5 rather than the bound in this example.
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Chapter 6 Problems

1. Consider a system in which data is transferred at a rate of 100 bits/sec over the channel.

(a) Find the symbol duration if we use sinc pulse for signalling and the channel bandwidth is 10
kHz.

(b) If the received SNR is 10 dB. Find the SNR per symbol and the SNR per bit if 4-QAM is used.

(c) Find the SNR per symbol and the SNR per bit for 16-QAM and compare with these metrics
for 4-QAM.

2. Consider BPSK modulation where the apriori probability of 0 and 1 is not the same. Specifically
p[sn = 0] = 0.3 and p[sn = 1] = 0.7.

(a) Find the probability of bit error Pb in AWGN assuming we encode a 1 as s1(t) = A cos(2πfct)
and a 0 as amplitude s2(t) = −A cos(2πfct, and the receiver structure is as shown in Fig-
ure 5.17.

(b) Suppose you can change the threshold value in the receiver of Figure 5.17. Find the threshold
value that yields equal error probability regardless of which bit is transmitted, i.e. the threshold
value that yields p(m̂ = 0|m = 1)p(m = 1) = p(m̂ = 1|m = 0)p(m = 0).

(c) Now suppose we change the modulation so that s1(t) = A cos(2πfct) and s2(t) = −B cos(2πfct.
Find A and B so that the receiver of Figure 5.17 with threshold at zero has p(m̂ = 0|m =
1)p(m = 1) = p(m̂ = 1|m = 0)p(m = 0).

(d) Compute and compare the expression for Pb in parts (a), (b) and (c) assuming Eb/N0 = 10
dB. For which system is pb minimized?

3. Consider a BPSK receiver where the demodulator has a phase offset of φ relative to the transmit-
ted signal, so for a transmitted signal s(t) = ±g(t) cos(2πfct), the carrier in the demodulator of
Figure 5.17 is cos(2πfct+ φ). Determine the threshold level in the threshold device of Figure 5.17
that minimizes probability of bit error, and find this minimum error probability.

4. Assume a BPSK demodulator where the receiver noise is added after the integrator, as shown in
the figure below. The decision device outputs a “1” if its input x has Rex ≥ 0, and a “0” otherwise.
Suppose the additive noise term n(t) = 1.1ejθ, where p(θ = nπ/3) = 1/6 for n = 0, 1, 2, 3, 4, 5.
What is the probability of making a decision error in the decision device, i.e. outputting the
wrong demodulated bit, assuming Ac =

√
2/Tb and that information bits corresponding to a “1”

(s(t) = Ac cos(2πfct)) or a “0” (s(t) = −Ac cos(2πfct)) are equally likely.

0

Decision
 Device

cπ 

n(t)

cos (2    f  t)

Tb

( )dt
s(t) x 1 or 0

5. Find an approximation to Ps for the following signal constellations:
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5 - QAM 9 - QAM
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a
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3a

3a

a

a

(a) (b)

(c) (d)

6. Plot the exact symbol error probability and the approximation from Table 6.1 of 16QAM with
0 ≤ γs ≤ 30 dB. Does the error in the approximation increase or decrease with γs and why?

7. Plot the symbol error probability Ps for QPSK using the approximation in Table 6.1 and Craig’s
exact result for 0 ≤ γs ≤ 30 dB. Does the error in the approximation increase or decrease with γs
and why?

8. In this problem we derive an algebraic proof of the alternate representation of the Q-function (6.43)
from its original representation (6.42). We will work with the complementary error function (erfc)
for simplicity and make the conversion at the end. The erfc(x) function is traditionally defined by

erfc(x) =
2√
π

∫ ∞

x
e−t

2
dt. (6.95)

The alternate representation is of this, corresonding to the alternate representation of the Q-function
(6.43) is

erfc(x) =
2
π

∫ π/2

0
e−x

2/ sin2 θdθ. (6.96)

(a) Consider the integral

Ix(a)
4
=
∫ ∞

0

e−at2

x2 + t2
dt. (6.97)

Show that Ix(a) satisfies the following differential equation:

x2Ix(a) − ∂Ix(a)
∂a

=
1
2

√
π

a
. (6.98)
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(b) Solve the differential equation (6.98) and deduce that

Ix(a)
4
=
∫ ∞

0

e−at2

x2 + t2
dt =

π

2x
eax

2
erfc(x

√
a). (6.99)

Hint: Ix(a) is a function in two variables x and a. However, since all our manipulations deal
with a only, you can assume x to be a constant while solving the differential equation.

(c) Setting a = 1 in (6.99) and making a suitable change of variables in the LHS of (6.99), derive
the alternate representation of the erfc function :

erfc(x) =
2
π

∫ π/2

0
e−x

2/ sin2 θdθ

(d) Convert this alternate representation of the erfc function to the alternate representation of the
Q function.

9. Consider a communication system which uses BPSK signalling with average signal power of 100
Watts and the noise power at the receiver is 4 Watts. Can this system be used for transmission of
data? Can it be used for voice? Now consider there is fading with an average SNR γ̄b = 20 dB.
How does your answer to the above question change?

10. Consider a cellular system at 900 MHz with a transmission rate of 64 Kbps and multipath fad-
ing. Explain which performance metric, average probability of error or outage probability, is more
appropriate and why for user speeds of 1 mph, 10 mph, and 100 mph.

11. Derive the expression for the moment generating function for Rayleigh fading, Eq. 6.37.

12. This problem illustrates why satellite systems that must compensate for shadow fading are going
bankrupt. Consider a LEO satellite system orbiting 500 Km above the earth. Assume the signal
follows a free space path loss model with no multipath fading or shadowing. The transmitted signal
has a carrier frequency of 900 MHz and a bandwidth of 10 KHz. The handheld receivers have noise
spectral density of 10−16 (total noise power is NoB) mW/Hz. Assume nondirectional antennas (0
dB gain) at both the transmitter and receiver. Suppose the satellite must support users in a circular
cell on the earth of radius 100 Km at a BER of 10−6.

(a) For DPSK modulation what transmit power is needed such that all users in the cell meet the
10−6 BER target.

(b) Repeat part (a) assuming that the channel also experiences log normal shadowing with σ = 8
dB, and that users in a cell must have Pb = 10−6 (for each bit) with probability 0.9.

13. In this problem we explore the power penalty involved in going to higher level signal modulations,
i.e. from BPSK to 16PSK.

(a) Find the minimum distance between constellation points in 16PSK modulation as a function
of signal energy Es.

(b) Find αM and βM such that the symbol error probability of 16PSK in AWGN is approximately

Ps ≈ αMQ
(√

βMγs
)
.
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(c) Using your expression in part (b), find an approximation for the average symbol error proba-
bility of 16PSK in Rayleigh fading in terms of γs.

(d) Convert the expressions for average symbol error probability of 16PSK in Rayleigh fading to
expressions for average bit error probability assuming Gray coding.

(e) Find the approximate value of γb required to obtain a BER of 10−3 in Rayleigh fading for
BPSK and 16PSK. What is the power penalty in going to the higher level signal constellation
at this BER?

14. Find a closed-form expression for the average probability of error for DPSK modulation in Nakagami-
m fading evalute for m = 4 and γb = 10 dB.

15. The Nakagami distribution is parameterized by m, which ranges from m = .5 to m = ∞. The m
parameter measures the ratio of LOS signal power to multipath power, so m = 1 corresponds to
Rayleigh fading, m = ∞ corresponds to an AWGN channel with no fading, and m = .5 corresponds
to fading that results in performance that is worse than with a Rayleigh distribution. In this
problem we explore the impact of the parameter m on the performance of BPSK modulation in
Nakagami fading.

Plot the average bit error Pb of BPSK modulation in Nakagami fading with average SNR ranging
from 0 to 20dB for m parameters m = 1 (Rayleigh), m = 2, and m = 4 (The Moment Generating
Function technique of Section 6.3.3 should be used to obtain the average error probability). At an
average SNR of 10 dB, what is the difference in average BER?

16. Assume a cellular system with log-normal shadowing plus Rayleigh fading. The signal modulation
is DPSK. The service provider has determined that it can deal with an outage probability of .01,
i.e. 1 in 100 customers are unhappy at any given time. In nonoutage the voice BER requirement
is P b = 10−3. Assume a noise power spectral density of No = 10−16 mW/Hz, a signal bandwidth
of 30 KHz, a carrier frequency of 900 MHz, free space path loss propagation with nondirectional
antennas, and shadowing standard deviation of σ = 6 dB. Find the maximum cell size that can
achieve this performance if the transmit power at the mobiles is limited to 100 mW.

17. In this problem we derive the probability of bit error for DPSK in fast Rayleigh fading. By sym-
metry, the probability of error is the same for transmitting a zero bit or a one bit. Let us as-
sume that over time kTb a zero bit is transmitted, so the transmitted symbol at time kTb is the
same as at time k − 1: s(k) = s(k − 1). In fast fading the corresponding received symbols are
z(k− 1) = gk−1s(k − 1) + n(k− 1) and z(k) = gks(k− 1) + n(k), where gk−1 and gk are the fading
channel gains associated with transmissions over times (k − 1)Tb and kTb.

a) Show that the decision variable input to the phase comparator of Figure 5.20 to extract the
phase difference is z(k)z∗(k − 1) = gkg

∗
k−1 + gks(k − 1)n∗k−1 + g∗k−1s

∗
k−1nk + nkn

∗
k−1.

Assuming a reasonable SNR, the last term nkn
∗
k−1 of this expression can be neglected. Neglecting

this term and defining ñk = s∗k−1nk and ñk−1 = s∗k−1nk−1, we get a new random variable z̃ =
gkg

∗
k−1 + gkñ

∗
k−1 + g∗k−1ñk. Given that a zero bit was transmitted over time kTb, an error is made if

x = <{z̃} < 0, so we must determine the distribution of x. The characteristic function for x is the
2-sided Laplace transform of the pdf of x:

ΦX(s) =
∫ ∞

−∞
pX(s)e−sxdx = E[e−sx].
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This function will have a left plane pole p1 and a right plane pole p2, so can be written as

ΦX(s) =
p1p2

(s− p1)(s− p2)
.

The left plane pole p1 corresponds to the pdf pX(x) for x ≥ 0 and the right plane pole corresponds
to the pdf pX(x) for x < 0

b) Show through partial fraction expansion that ΦX(s) can be written as

ΦX(s) =
p1p2

(p1 − p2)
1

(s− p1)
+

p1p2

(p2 − p1)
1

(s− p2)
.

An error is made if x = <{z̃} < 0, so we need only consider the pdf pX(x) for x < 0 corresponding
to the second term of ΦX(s) in part b).

c) Show that the inverse Laplace transform of the second term of ΦX(s) from part b) is

pX(x) =
p1p2

p2 − p1
ep2x, x < 0.

d) Use part c) to show that Pb = −p1/(p2 − p1).

In x = <{z̃} = <{gkg∗k−1 +gkñ∗k−1 +g∗k−1ñk.} the channel gains gk and gk−1 and noises ñk and ñk−1

are complex Gaussian random variables. Thus, the poles p1 and p2 in pX(x) are derived using the
general quadratic form of complex Gaussian random variables [1, Appendix B][18, Appendix B] as

p1 =
−1

2(γb[1 + ρc])] +N0)
,

and
p2 =

1
2(γb[1 − ρc])] +N0)

,

for ρC the correlation coefficient of the channel over the bit time Tb.

e) Find a general expression for Pb in fast Rayleigh fading using these values of p1 and p2 in the
Pe expression from part d).

f) Show that this reduces to the average probability of error P b = 1
2(1+γb)

for a slowly fading
channel that does not decorrelate over a bit time.

18. Plot the bit error probability for DPSK in fast Rayleigh fading for γb ranging from 0 to 60 dB and
ρC = J0(2πBDT ) with BDT = .01, .001, and .0001. For each value of BdT , at approximately what
value of γb does the error floor dominate the error probability/

19. Find the irreducible error floor for DQPSK modulation due to Doppler, assuming a Gaussian
Doppler power spectrum with BD = 80 Hz and Rician fading with K = 2.

20. Consider a wireless channel with an average delay spread of 100 nsec and a doppler spread of 80
Hz. Given the error floors due to doppler and ISI, for DQPSK modulation in Rayleigh fading and
uniform scattering, approximately what range of data rates can be transmitted over this channel
with a BER less than 10−4.

21. Using the error floors of Figure 6.5, find the maximum data rate that can be transmitted through
a channel with delay spread σTm = 3µ sec using BPSK, QPSK, or MSK modulation such that the
probability of bit error Pb is less than 10−3.
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Chapter 7

Diversity

In Chapter 6 we saw that both Rayleigh fading and log normal shadowing induce a very large power
penalty on the performance of modulation over wireless channels. One of the most powerful techniques to
mitigate the effects of fading is to use diversity-combining of independently fading signal paths. Diversity-
combining uses the fact that independent signal paths have a low probability of experiencing deep fades
simultaneously. Thus, the idea behind diversity is to send the same data over independent fading paths.
These independent paths are combined in some way such that the fading of the resultant signal is
reduced. For example, for a system with two antennas that experience independent fading, it is unlikely
that both antennas experience deep fades at the same time. By selecting the strongest signal between
the two antennas, called selection combining, we will obtain a much better signal than if we just had
one antenna. This chapter focuses on the analysis of the most common forms of diversity: selection
combining, threshold combining, equal-gain combining, and maximal-ratio combining. Other diversity
techniques that have potential benefits over these schemes in terms of performance or complexity are
discussed in [1, Chapter 9.10].

Diversity techniques that mitigate the effect of multipath fading are called microdiversity, and
that is the focus of this chapter. Diversity to mitigate the effects of shadowing from buildings and objects
is called macrodiversity. Macrodiversity is generally implemented by combining signals received by
several base stations or access points. This requires coordination among the different base stations or
access points. Such coordination is implemented as part of the networking protocols in infrastructure-
based wireless networks. We will therefore defer discussion of macrodiversity until Chapter 15, where we
discuss the design of such networks.

7.1 Realization of Independent Fading Paths

There are many ways of achieving independent fading paths in a wireless system. One method is to use
multiple receive antennas, also called an antenna array, where the elements of the array are separated
in distance. This type of diversity is referred to as space diversity. Note that with space diversity,
independent fading paths are realized without an increase in transmit signal power or bandwidth. The
separation between antennas must be such that the fading amplitudes corresponding to each antenna are
approximately independent. For example, from (3.26) in Chapter 3, in a uniform scattering environment
with isotropic transmit and receive antennas the minimum antenna separation required for independent
fading on each antenna is approximately one half wavelength ( .38λ to be exact). If the transmit or receive
antennas are directional (which is common at the base station if the system has cell sectorization), then
the multipath is confined to a small angle relative to the LOS ray, which means that a larger antenna
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separation is required to get independent fading samples [2].
A second method of achieving diversity is by using either two transmit antennas or two receive an-

tennas with different polarization (e.g. vertically and horizontally polarized waves). The two transmitted
waves follow the same path however, since the multiple random reflections distribute the power nearly
equally relative to both polarizations, the average receive power corresponding to either polarized an-
tenna is approximately the same. Since the scattering angle relative to each polarization is random, it
is highly improbable that signals received on the two differently polarized antennas would be simultane-
ously in deep fades. There are two disadvantages of polarization diversity. First, you can have at most
two diversity branches, corresponding to the two types of polarization. The second disadvantage is that
polarization diversity loses effectively half the power (3 dB) since the transmit or receive power is divided
between the two differently polarized antennas.

Directional antennas provide angle, or directional, diversity by restricting the receive antenna beamwidth
to a given angle. In the extreme, if the angle is very small then at most one of the multipath rays will fall
within the receive beamwidth, so there is no multipath fading from multiple rays. However, this diversity
technique requires either a sufficient number of directional antennas to span all possible directions of
arrival or a single antenna whose directivity can be steered to the angle of arrival of one of the multipath
components (preferably the strongest one). Smart antennas are antenna arrays with adjustable phase
at each antenna element: such arrays form directional antennas that can be steered to the incoming angle
of the strongest multipath component [3].

Frequency diversity is achieved by transmitting the same narrowband signal at different carrier
frequencies, where the carriers are separated by the coherence bandwidth of the channel. Spread spectrum
techniques, discussed in Chapter 13, are sometimes described as providing frequency diversity since the
channel gain varies across the bandwidth of the transmitted signal. However, this is not equivalent to
sending the same information signal over indepedently fading paths. As discussed in Chapter 13.4, spread
spectrum with RAKE reception does provide independently fading paths of the information signal and
thus is a form of frequency diversity. Time diversity is achieved by transmitting the same signal at
different times, where the time difference is greater than the channel coherence time (the inverse of the
channel Doppler spread). Time diversity can also be achieved through coding and interleaving, as will be
discussed in Chapter 8. Clearly time diversity can’t be used for stationary applications, since the channel
coherence time is infinite and thus fading is highly correlated over time.

7.2 Diversity System Model

A diversity system combines the independent fading paths to obtain a resultant signal that is then passed
through a standard demodulator. The combining can be done in several ways which vary in complexity
and overall performance. We will use space diversity as a reference to describe the diversity systems and
the different combining techniques, although the techniques can be applied to any type of diversity. Thus,
the combining techniques will be defined as operations on an antenna array.

Most combining techniques are linear: the output of the combiner is just a weighted sum of the
different fading paths or branches, as shown in Figure 7.1 for M -branch diversity. Specifically, when all
but one of the complex αis are zero, only one path is passed to the combiner output. When more than
one of the αis is nonzero, the combiner adds together multiple paths, where each path may be weighted
by different value. Combining more than one branch signal requires co-phasing, where the phase θi of
the ith branch is removed through the multiplication by αi = aie

−jθi for some real-valued ai. This phase
removal requires coherent detection of each branch to determine its phase θi. Without co-phasing, the
branch signals would not add up coherently in the combiner, so the resulting output could still exhibit
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significant fading due to constructive and destructive addition of the signals in all the branches.
The multiplication by αi can be performed either before detection (predetection) or after detection

(post-detection) with essentially no difference in performance. Combining is typically performed post-
detection, since the branch signal power and/or phase is required to determine the appropriate αi value.
Post-detection combining of multiple branches requires a dedicated receiver for each branch to determine
the branch phase, which increases the hardware complexity and power consumption, particular for a large
number of branches.

Σ

α1 α3α2 αM

1

j  θ1r e     s(t)
j  θ

2r e     s(t)2
3r e     s(t)

j  θ3 j  θ
M

Mr e      s(t)

i
2ith Branch SNR: r  /N i

Combiner
  Output

γ
Σ

SNR:

Figure 7.1: Linear Combiner.

The main purpose of diversity is to combine the independent fading paths so that the effects of fading
are mitigated. The signal output from the combiner equals the original transmitted signal s(t) multiplied
by a random complex amplitude term αΣ =

∑
i αirie

jθi that results from the path combining. This
complex amplitude term results in a random SNR γΣ at the combiner output, where the distribution of
γΣ is a function of the number of diversity paths, the fading distribution on each path, and the combining
technique, as shown in more detail below. Since the combiner output is fed into a standard demodulator
for the transmitted signal s(t), the performance of the diversity system in terms of P s and Pout is as
defined in Section 6.3.1, i.e.

P s =
∫ ∞

0
Ps(γ)pγΣ(γ)dγ, (7.1)

where Ps(γΣ) is the probability of symbol error for demodulation of s(t) in AWGN with SNR γΣ, and

Pout = p(γΣ ≤ γ0) =
∫ γ0

0
pγΣ(γ)dγ, (7.2)

for some target SNR value γ0.
In the following subsections we will describe the different combining techniques and their performance

in more detail. These techniques entail various tradeoffs between performance and complexity.
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7.3 Selection Combining

In selection combining (SC), the combiner outputs the signal on the branch with the highest SNR r2i /Ni.
This is equivalent to choosing the branch with the highest r2i +Ni if the noise Ni = N is the same on all
branches 1. Since only one branch is used at a time, SC often requires just one receiver that is switched
into the active antenna branch. However, a dedicated receiver on each antenna branch may be needed for
systems that transmit continuously in order to simultaneously and continuously monitor SNR on each
branch. With SC the path output from the combiner has an SNR equal to the maximum SNR of all
the branches. Moreover, since only one branch output is used, co-phasing of multiple branches is not
required, so this technique can be used with either coherent or differential modulation.

For M branch diversity, the CDF of γΣ is given by

PγΣ(γ) = p(γΣ < γ) = p(max[γ1, γ2, . . . , γM ] < γ) =
M∏
i=1

p(γi < γ). (7.3)

We obtain the pdf of γΣ by differentiating PγΣ(γ) relative to γ, and the outage probability by evaluating
PγΣ(γ) at γ = γ0. Assume that we have M branches with uncorrelated Rayleigh fading amplitudes ri.
The instantaneous SNR on the ith branch is therefore given by γi = r2i /N . Defining the average SNR on
the ith branch as γi = E[γi], the SNR distribution will be exponential:

p(γi) =
1
γi
e−γi/γi . (7.4)

From (6.47), the outage probability for a target γ0 on the ith branch in Rayleigh fading is

Pout(γ0) = 1 − e−γ0/γi . (7.5)

The outage probability of the selection-combiner for the target γ0 is then

Pout(γ0) ==
M∏
i=1

p(γi < γ0) =
M∏
i=1

[
1 − e−γ0/γi

]
. (7.6)

If the average SNR for all of the branches are the same (γi = γ for all i), then this reduces to

Pout(γ0) = p(γΣ < γ0) =
[
1 − e−γ0/γ

]M
. (7.7)

Differentiating (7.7) relative to γ0 yields the pdf for γΣ:

pγΣ(γ) = p(γΣ = γ) =
M

γ

[
1 − e−γ/γ

]M−1
e−γ/γ . (7.8)

From (7.8) we see that the average SNR of the combiner output in i.i.d. Rayleigh fading is

γΣ =
∫ ∞

0
γpγΣ(γ)dγ

=
∫ ∞

0

γM

γ

[
1 − e−γ/γ

]M−1
e−γ/γdγ

= γ
M∑
i=1

1
i
.

1In practice r2
i + Ni is easier to measure than SNR since it just entails find the total power in the received signal.
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Thus, the average SNR gain increases with M , but not linearly. The biggest gain is obtained by going
from no diversity to two-branch diversity. Increasing the number of diversity branches from two to three
will give much less gain than going from one to two, and in general increasing M yields diminishing
returns in terms of the SNR gain. This trend is also illustrated in Figure 7.2, which shows Pout versus
γ/γ0 for different M in i.i.d. Rayleigh fading We see that there is dramatic improvement even with
just two-branch selection combining: going from M = 1 to M = 2 at 1% outage probability there is an
approximate 12 dB reduction in required SNR, and at .01% outage probability there is an approximate 20
dB reduction in required SNR. However, at .01% outage, going from two-branch to three-branch diversity
results in an additional reduction of approximately 7 dB, and from three-branch to four-branch results in
an additional reduction of approximately 4 dB. Clearly the power savings is most substantial going from
no diversity to two-branch diversity, with diminishing returns as the number of branches is increased.
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Figure 7.2: Outage Probability of Selection Combining in Rayleigh Fading.

Example 7.1: Find the outage probability of BPSK modulation at Pb = 10−3 for a Rayleigh fading
channel with SC diversity for M = 1 (no diversity), M = 2, and M = 3. Assume equal branch SNRs of
γ = 15 dB.

Solution: A BPSK modulated signal with γb = 7 dB has Pb = 10−3. Thus, we have γ0 = 7 dB.
Substituting γ0 = 10.7 and γ = 101.5 into (7.7) yields Pout = .1466 for M = 1, Pout = .0215 for M = 2,
and Pout = .0031 for M = 2. We see that each additional branch reduces outage probability by almost
an order of magnitude.

The average probability of symbol error is obtained from (7.1) with Ps(γ) the probability of symbol

207

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


error in AWGN for the signal modulation and pγΣ(γ) the distribution of the combiner SNR. For most
fading distributions and coherent modulations, this result cannot be obtained in closed-form and must be
evaluated numerically or by approximation. We plot P b versus γb in i.i.d. Rayleigh fading, obtained by a
numerical evaluation of

∫
Q(

√
2γ)pγΣ(γ) for pγΣ(γ) given by (7.8), in Figure 7.3. Closed-form results do

exist for differential modulation under i.i.d. Rayleigh fading on each branch [4, Chapter 6.1][1, Chapter
9.7]. For example, it can be shown that for DPSK with pγΣ(γ) given by (7.8) the average probability of
symbol error is given by

P b =
∫ ∞

0

1
2
eγpγΣ(γ)dγ =

M

2

M−1∑
m=0

(−1)m

(
M − 1
m

)

1 +m+ γ
. (7.9)
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Figure 7.3: P b of BPSK under SC in i.i.d. Rayleigh Fading.

In the above derivations we assume that there is no correlation between the branch amplitudes. If
the correlation is nonzero, then there is a slight degradation in performance which is almost negligible for
correlations below 0.5. Derivation of the exact performance degradation due to branch correlation can
be found in [1, Chapter 9.7][2].

7.4 Threshold Combining

SC for systems that transmit continuously may require a dedicated receiver on each branch to continuously
monitor branch SNR. A simpler type of combining, called threshold combining, avoids the need for a
dedicated receiver on each branch by scanning each of the branches in sequential order and outputting
the first signal with SNR above a given threshold γT . As in SC, since only one branch output is used at
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Figure 7.4: SNR of SSC Technique.

a time, co-phasing is not required. Thus, this technique can be used with either coherent or differential
modulation.

Once a branch is chosen, as long as the SNR on that branch remains above the desired threshold, the
combiner outputs that signal. If the SNR on the selected branch falls below the threshold, the combiner
switches to another branch. There are several criteria the combiner can use to decide which branch to
switch to [5]. The simplest criterion is to switch randomly to another branch. With only two-branch
diversity this is equivalent to switching to the other branch when the SNR on the active branch falls
below γT . This method is called switch and stay combining (SSC). The switching process and SNR
associated with SSC is illustrated in Figure 7.4. Since the SSC does not select the branch with the highest
SNR, its performance is between that of no diversity and ideal SC.

Let us denote the SNR on the ith branch by γi and the SNR of the combiner output by γΣ. The
CDF of γΣ will depend on the threshold level γT and the CDF of γi. For two-branch diversity with i.i.d.
branch statistics the CDF of the combiner output PγΣ(γ) = p(γΣ ≤ γ) can be expressed in terms of the
CDF Pγi(γ) = p(γi ≤ γ) and pdf pγi(γ) of the individual branch SNRs as

PγΣ(γ) =

{
Pγ1(γT )Pγ2(γ) γ < γT
p(γT ≤ γ1 ≤ γ) + Pγ1(γT )Pγ2(γ) γ ≥ γT .

(7.10)

For Rayleigh fading in each branch with γi = γ, i = 1, 2 this yields

PγΣ(γ) =

{
1 − e−γT /γ − e−γ/γ + e−(γT +γ)/γ γ < γT
1 − 2e−γ/γ + e−(γT +γ)/γ γ ≥ γT .

(7.11)

The outage probability Pout associated with a given γ0 is obtained by evaluating PγΣ(γ) at γ = γ0:

Pout(γ0) = PγΣ(γ0) =

{
1 − e−γT /γ − e−γ0/γ + e−(γT +γ0)/γ γ < γT
1 − 2e−γ0/γ + e−(γT +γ0)/γ γ ≥ γT .

(7.12)

The performance of SSC under other types of fading, as well as the effects of fading correlation, is studied
in [1, Chapter 9.8],[6, 7]. In particular, it is shown in [1, Chapter 9.8] that for any fading distribution,
SSC with an optimized threshold has the same outage probability as SC.

Example 7.2: Find the outage probability of BPSK modulation at Pb = 10−3 for two-branch SSC di-
versity with i.i.d. Rayleigh fading on each branch for threshold values of γT = 5, 7, and 10 dB. Assume
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the average branch SNR is γ = 15 dB. Discuss how the outage proability changes with γT . Also compare
outage probability under SSC with that of SC and no diversity from Example 7.1.

Solution: As in Example 7.1, we have γ0 = 7 dB. For γT = 5 dB, γ0 ≥ γT , so we use the second line of
(7.12) to get

Pout = 1 − 2e−10.7/101.5
+ e−(10.5+101.5)/101.5

= .0654.

For γT = 7 dB, γ0 = γT , so we again use the second line of (7.12) to get

Pout = 1 − 2e−10.7/101.5
+ e−(10.7+101.5)/101.5

= .0215.

For γT = 10 dB, γ0 < γT , so we use the first line of (7.12) to get

Pout = 1 − e−10/101.5 − e−10.7/101.5
+ −e−(10+10.7)/101.5

= .0397.

We see that the outage probability is smaller for γT = 7 dB than for the other two values. At γT = 5 dB
the threshold is too low, so the active branch can be below the target γ0 for a long time before a switch
is made, which contributes to a large outage probability. At γT = 10 dB the threshold is too high: the
active branch will often fall below this threshold value, which will cause the combiner to switch to the
other antenna even though that other antenna may have a lower SNR than the active one. This example
indicates that the threshold γT that minimizes Pout is typically close to the target γ0.

From Example 7.1, SC has Pout = .0215. Thus, γt = 7 dB is the optimal threshold where SSC
performs the same as SC. We also see that performance with an unoptimized threshold can be much worse
than SC. However, the performance of SSC under all three thresholds is better than the performance
without diversity, derived as Pout = .1466 in Example 7.1.

We obtain the pdf of γΣ by differentiating (7.10) relative to γ. Then the average probability of error
is obtained from (7.1) with Ps(γ) the probability of symbol error in AWGN and pγΣ(γ) the pdf of the SSC
output SNR. For most fading distributions and coherent modulations, this result cannot be obtained in
closed-form and must be evaluated numerically or by approximation. However, for i.i.d. Rayleigh fading
we can differentiate (7.11) to get

pγΣ(γ) =



(
1 − e−γT /γ

)
1
γ e

−γ/γ γ < γT(
2 − e−γT /γ

)
1
γ e

−γ/γ γ ≥ γT .
(7.13)

As with SC, for most fading distributions and coherent modulations, the resulting average probability of
error is not in closed-form and must be evaluated numerically. However, closed-form results do exist for
differential modulation under i.i.d. Rayleigh fading on each branch. In particular, the average probability
of symbol error for DPSK is given by

P b =
∫ ∞

0

1
2
e−γpγΣ(γ)dγ =

1
2(1 + γ)

(
1 − e−γT /γ + e−γT e−γT /γ .

)
(7.14)

Example 7.3: Find the average probability of error for DPSK modulation under two-branch SSC di-
versity with i.i.d. Rayleigh fading on each branch for threshold values of γT = 5, 7, and 10 dB. Assume
the average branch SNR is γ = 15 dB. Discuss how the average proability of error changes with γT . Also
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compare average error probability under SSC with that of SC and with no diversity.

Solution: Evaluating (7.14) with γ = 15 dB and γT = 3, 7, and 10 dB yields, respectively, P b = .0029,
P b = .0023, P b = .0042. As in the previous example, there is an optimal threshold that mini-
mizes average probability of error, setting the threshold too high or too low degrades performance.
From (7.9) we have that with SC, P b = .5(1 + 101.5)−1 − .5(2 + 101.5)−1 = 4.56 · 10−4, which is
roughly an order of magnitude less than with SSC and an optimized threshold. With no diversity,
P b = .5(1 + 101.5)−1 = .0153, which is roughly an order of magnitude worse than with two-branch SSC.

7.5 Maximal Ratio Combining

In SC and SSC, the output of the combiner equals the signal on one of the branches. In maximal ratio
combining (MRC) the output is a weighted sum of all branches, so the αis in Figure 7.1 are all nonzero.
Since the signals are cophased, αi = aie

−jθi , where θi is the phase of the incoming signal on the ith
branch. Thus, the envelope of the combiner output will be r =

∑M
i=1 airi. Assuming the same noise

power N in each branch yields a total noise power Ntot at the combiner output of Ntot =
∑M
i=1 a

2
iN .

Thus, the output SNR of the combiner is

γΣ =
r2

Ntot
=

1
N

(∑M
i=1 airi

)2

∑M
i=1 a

2
i

. (7.15)

The goal is to chose the αis to maximize γΣ. Intuitively, branches with a high SNR should be
weighted more than branches with a low SNR, so the weights a2

i should be proportional to the branch
SNRs r2i /N . We find the ais that maximize γΣ by taking partial derivatives of (7.15) or using the Swartz
inequality [2]. Solving for the optimal weights yields a2

i = r2i /N , and the resulting combiner SNR becomes
γΣ =

∑M
i=1 r

2
i /N =

∑M
i=1 γi. Thus, the SNR of the combiner output is the sum of SNRs on each branch.

The average combiner SNR increases linearly with the number of diversity branches M , in contrast to
the diminishing returns associated with the average combiner SNR in SC given by (7.9).

To obtain the distribution of γΣ we take the product of the exponential moment generating or
characteristic functions. Assuming i.i.d. Rayleigh fading on each branch with equal average branch SNR
γ, the distribution of γΣ is chi-squared with 2M degrees of freedom, expected value γΣ = Mγ, and
variance 2Mγ:

pγΣ(γ) =
γM−1e−γ/γ

γM (M − 1)!
, γ ≥ 0. (7.16)

The corresponding outage probability for a given threshold γ0 is given by

Pout = p(γΣ < γ0) =
∫ γ0

0
pγΣ(γ)dγ = 1 − e−γ0/γ

M∑
k=1

(γ0/γ)k−1

(k − 1)!
. (7.17)

Figure 7.5 plots Pout for maximal ratio combining indexed by the number of diversity branches.
The average probability of symbol error is obtained from (7.1) with Ps(γ) the probability of symbol

error in AWGN for the signal modulation and pγΣ(γ) the pdf of γΣ. For BPSK modulation with i.i.d
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Figure 7.5: Pout for MRC with i.i.d. Rayleigh fading.

Rayleigh fading, where pγΣ(γ) is given by (7.16), it can be shown that [4, Chapter 6.3]

P b =
∫ ∞

0
Q(
√

2γ)pγΣ(γ)dγ =
(

1 − Γ
2

)M M−1∑
m=0

(
M − 1 +m

m

)(
1 + Γ

2

)m
, (7.18)

where Γ =
√
γ/(1 + γ). This equation is plotted in Figure 7.6. Comparing the outage probability

for MRC in Figure 7.5 with that of SC in Figure 7.2 or the average probability of error for MRC in
Figure 7.6 with that of SC in Figure 7.3 indicates that MRC has significantly better performance than
SC. In Section 7.7 we will use a different analysis based on MGFs to compute average error probability
under MRC, which can be applied to any modulation type, any number of diversity branches, and any
fading distribution on the different branches.

7.6 Equal-Gain Combining

MRC requires knowledge of the time-varying SNR on each branch, which can be very difficult to mea-
sure. A simpler technique is equal-gain combining, which co-phases the signals on each branch and then
combines them with equal weighting, αi = e−θi . The SNR of the combiner output, assuming equal noise
power N in each branch, is then given by

γΣ =
1

NM

(
M∑
i=1

ri

)2

. (7.19)
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Figure 7.6: P b for MRC with i.i.d. Rayleigh fading.

The pdf and CDF of γΣ do not exist in closed-form. For i.i.d. Rayleigh fading and two-branch diversity
and average branch SNR γ, an expression for the CDF in terms of the Q function can be derived as [8,
Chapter 5.6][4, Chapter 6.4]

PγΣ(γ) = 1 − e−2γ/γ
√
πγ

γ
e−γ/γ

(
1 − 2Q

(√
2γ/γ

))
. (7.20)

The resulting outage probability is given by

Pout(γ0) = 1 − e−2γR −√
πγRe

−γR

(
1 − 2Q

(√
2γR

))
, (7.21)

where γR = γ0/γ. Differentiating (7.20) relative to γ yields the pdf

pγΣ(γ) =
1
γ
e−2γ/γ +

√
πe−γ/γ

(
1√
4γγ

− 1
γ

√
γ

γ

)(
1 + 2Q(

√
2γ/γ)

)
. (7.22)

Substituting this into (7.1) for BPSK yields the average probability of bit error

P b =
∫ ∞

0
Q(
√

2γ)pγΣ(γ)dγ = .5


1 −

√
1 −

(
1

1 + γ

)2

 . (7.23)

It is shown in [8, Chapter 5.7] that performance of EGC is quite close to that of MRC, typically exhibiting
less than 1 dB of power penalty. This is the price paid for the reduced complexity of using equal gains.
A more extensive performance comparison between SC, MRC, and EGC can be found in [1, Chapter 9].
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Example 7.4: Compare the average probability of bit error of BPSK under MRC and EGC two-branch
diversity with i.i.d. Rayleigh fading with average SNR of 10 dB on each branch.

Solution: From (7.18), under MRC we have

P b =

(
1 −√10/11

2

)2 (
2 +

√
10/11

)
= 1.60 · 10−3.

From (7.23), under EGC we have

P b = .5


1 −

√
1 −

(
1
11

)2

 = 2.07 · 10−3.

So we see that the performance of MRC and EGC are almost the same.

7.7 Moment Generating Functions in Diversity Analysis

In this section we use the MGFs introduced in Section 6.3.3 to greatly simplify the analysis of average error
probability under diversity. The use of MGFs in diversity analysis arises from the difficulty in computing
the pdf pγΣ(γ) of the combiner SNR γΣ. Specifically, although the average probability of error and outage
probability associated with diversity combining are given by the simple formulas (7.1) and (7.2), these
formulas require integration over the distribution pγΣ(γ). This distribution is often not in closed-form for
an arbitrary number of diversity branches with different fading distributions on each branch, regardless
of the combining technique that is used. The pdf for pγΣ(γ) is often in the form of an infinite-range
integral, in which case the expressions for (7.1) and (7.2) become double integrals that can be difficult
to evaluate numerically. Even when pγΣ(γ) is in closed form, the corresponding integrals (7.1) and (7.2
may not lead to closed-form solutions and may be difficult to evaluate numerically. A large body of work
over many decades has addressed approximations and numerical techniques to compute the integrals
associated with average probability of symbol error for different modulations, fading distributions, and
combining techniques (see [9] and the references therein). Expressing the average error probability in
terms of the MGF for γΣ instead of its pdf often eliminates these integration difficulties. Specifically, when
the diversity fading paths that are independent but not necessarily identically distributed, the average
error probability based on the MGF of γΣ is typically in closed-form or consists of a single finite-range
integral that can be easily computed numerically.

The simplest application of MGFs in diversity analysis is for coherent modulation with MRC, so this
is treated first. We then discuss the use of MGFs in the analysis of average error probability under EGC
and SC.

7.7.1 Diversity Analysis for MRC

The simplicity of using MGFs in the analysis of MRC stems from the fact that, as derived in Section 7.5,
the combiner SNR γΣ is the sum of branch SNRS γi:

γΣ =
M∑
i=1

γi. (7.24)
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As in the analysis of average error probability without diversity (Section 6.3.3), let us again assume that
the probability of error in AWGN for the modulation of interest can be expressed either as an exponential
function of γs, as in (6.67), or as a finite range integral of such a function, as in (6.68).

We first consider the case where Ps is in the form of (6.67). Then the average probability of symbol
error under MRC is

P s =
∫ ∞

0
c1 exp[−c2γ]pγΣ(γ)dγ. (7.25)

We assume that the branch SNRs are independent, so that their joint pdf becomes a product of the
individual pdfs: pγ1,...,γM (γ1, . . . , γM ) = pγ1(γ1) . . . pγM (γM ). Using this factorization and substituting
γ = γ1 + . . .+ γM in (7.25) yields

P s = c1

∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0︸ ︷︷ ︸
M−fold

exp[−c2(γ1 + . . .+ γM )]pγ1(γ1) . . . pγM (γM )dγ1 . . . dγM . (7.26)

Now using the product forms exp[−β(γ1 + . . . + γM )] =
∏M
i=1 exp[−βγi] and pγ1(γ1) . . . pγM (γM ) =∏M

i=1 pγi(γi) in (7.26) yields

P s = c1

∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0︸ ︷︷ ︸
M−fold

M∏
i=1

exp[−c2γi]pγi(γi)dγi. (7.27)

Finally, switching the order of integration and multiplication in (7.27) yields our desired final form

P s = c1

M∏
i=1

∫ ∞

0
exp[−c2γi]pγi(γi)dγi = α

M∏
i=1

Mγi(−β). (7.28)

Thus, the average probability of symbol error is just the product of MGFs associated with the SNR on
each branch.

Similary, when Ps is in the form of (6.68), we get

P s =
∫ ∞

0

∫ B

A
c1 exp[−c2(x)γ]dxpγΣ(γ)dγ =

∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0︸ ︷︷ ︸
M−fold

∫ B

A
c1

M∏
i=1

exp[−c2(x)γi]pγi(γi)dγi. (7.29)

Again switching the order of integration and multiplication yields our desired final form

P s = c1

∫ B

A

M∏
i=1

∫ ∞

0
exp[−c2(x)γi]pγi(γi)dγi = c1

∫ B

A

M∏
i=1

Mγi(−c2(x))dx. (7.30)

Thus, the average probability of symbol error is just a single finite-range integral of the product of MGFs
associated with the SNR on each branch. The simplicity of (7.28) and (7.30) are quite remarkable, given
that these expressions apply for any number of diversity branches and any type of fading distribution on
each branch, as long as the branch SNRs are independent.

We now apply these general results to specific modulations and fading distributions. Let us first
consider DPSK, where Pb(γb) = .5e−γb in AWGN is in the form of (6.67) with c1 = 1/2 and c2 = 1. Thus,
from (7.28), the average probability of bit error in DPSK under M-fold MRC diversity is

P b =
1
2

M∏
i=1

Mγi(−1), (7.31)
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where Mγi(s) is the MGF of the fading distribution for the ith diversity branch, given by (6.63), (6.64),
and (6.65) for, respectively, Rayleigh, Ricean, and Nakagami fading. Note that this reduces to the
probability of average bit error without diversity given by (6.60) for M = 1.

Example 7.5: Compute the average probability of bit error for DPSK modulation under three-branch
MRC assuming i.i.d. Rayleigh fading in each branch with γ1 = 15 dB and γ2 = γ3 = 5 dB. Compare
with the case of no diversity with γ = 15 dB.

Solution: From (6.63), Mγi(s) = (1 − sγi)−1 Using this MGF in (7.31) with s = −1 yields

P b =
1
2

1
1 + 101.5

(
1

1 + 105

)2

= 8.85 ∗ 10−4.

With no diversity we have

P b =
1

2(1 + 101.5)
= 1.53 ∗ 10−2.

This indicates that additional diversity branches can significantly reduce average BER, even when the
SNR on this branches is somewhat low.

Example 7.6: Compute the average probability of bit error for DPSK modulation under three-branch
MRC assuming Nakagami fading in the first branch with m = 2 and γ1 = 15 dB, Ricean fading in the
second branch with K = 3 and γ2 = 5, and Nakagami fading in the third branch with m = 4 and γ3 = 5
dB. Compare with the results of the prior example.
Solution: From (6.64) and (6.65), for Nakagami fading Mγi(s) = (1 − sγi/m)−m and for Riciean fading

Mγs(s) =
1 +K

1 +K − sγs
exp

[
Ksγs

1 +K − sγs

]
.

Using these MGFs in (7.31) with s = −1 yields

P b =
1
2

(
1

1 + 101.5/2

)2 4
4 + 10.5

exp[−3 · 10.5/(4 + 10.5)]
(

1
1 + 10.5/4

)4

= 6.9 · 10−5

which is more than an order of magnitude lower than the average error probability under i.i.d. Rayleigh
fading with the same branch SNRs derived in the previous problem. This indicates that Nakagami and
Ricean fading are a much more benign distributions than Rayleigh, especially when multiple branches are
combined under MRC. This example also illustrates the power of the MGF approach: computing average
probability of error when the branch SNRs follow different distributions just consists of multiplying
together different functions in closed-form, whose result is then also in closed-form. Computing the pdf
of the sum of random variables from different families involves the convolution of their pdfs, which rarely
leads to a closed-form pdf.

For BPSK we see from (6.44) that Pb has the same form as (6.68) with the integration over φ where
c1 = 1/π, A = 0, B = π/2, and c2(φ) = 1/ sin2 φ. Thus we obtain the average bit error probability for
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BPSK with M -fold diversity as

P b =
1
π

∫ π/2

0

M∏
l=1

Mγi

(
− 1

sin2 φ

)
dφ. (7.32)

Similarly, if Ps = αQ(
√

2gγs) then Ps has the same form as (6.68) with integration over φ, c1 = 1/π,
A = 0, B = π/2, and c2(φ) = g/ sin2 φ, and the resulting average symbol error probability with M -fold
diversity is given by

P s =
1
π

∫ π/2

0

M∏
i=1

Mγi

(
− g

sin2 φ

)
dφ. (7.33)

If the branch SNRs are i.i.d. then this simplifies to

P s =
1
π

∫ π/2

0

(
Mγ

(
− g

sin2 φ

))M
dφ, (7.34)

where Mγ(s) is the common MGF for the branch SNRs. The probability of symbol error for MPSK in
(6.45) is also in the form (6.68), leading to average symbol error probability

P s =
1
π

∫ (M−1)π
M

0

M∏
i=1

Mγi

(
− g

sin2 φ

)
dφ. (7.35)

where g = sin2
(
π
M

)
. For i.i.d. fading this simplifies to

P s =
1
π

∫ (M−1)π
M

0

(
Mγ

(
− g

sin2 φ

))M
dφ. (7.36)

Example 7.7: Find an expression for the average symbol error probability for 8PSK modulation for
two-branch MRC combining, where each branch is Rayleigh fading with average SNR of 20 dB.

Solution The MGF for Rayleigh isMγi(s) = (1−sγi)−1. Using this MGF in (7.36) with s = − sin2 π/8/ sin2 φ
and γ = 100 yields

P s =
1
π

∫ 7π/8

0


 1

1 + 100 sin2 π/8
sin2 φ


2

dφ.

This expression does not lead to a closed-form solution and so must be evaluated numerically, which
results in P s = 1.56 · 10−3.

We can use similar techniques to extend the derivation of the exact error probability for MQAM in
fading, given by (7.37), to include MRC diversity. Specifically, we first integrate the expression for Ps
in AWGN, expressed in (6.80) using the alternate representation of Q and Q2, over the distribution of
γΣ. Since γΣ =

∑
i γi and the SNRs are independent, the exponential function and distribution in the

resulting expression can be written in product form. Then we use the same reordering of integration and
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multiplication used above in the MPSK derivation. The resulting average probability of symbol error for
MQAM modulation with MRC combining is given by

P s =
4
π

(
1 − 1√

M

) ∫ π/2

0

M∏
i=1

Mγi

(
− g

sin2 φ

)
dφ− 4

π

(
1 − 1√

M

)2 ∫ π/4

0

M∏
i=1

Mγi

(
− g

sin2 φ

)
dφ. (7.37)

More details on the use of MGFs to obtain average probability of error under M -fold MRC diversity for
a broad class of modulations can be found in [19, Chapter 9.2].

7.7.2 Diversity Analysis for EGC and SC

MGFs are less useful in the analysis of EGC and SC than in MRC. The reason is that with MRC,
γΣ =

∑
i γi, so exp[−c2γΣ] =

∏
i exp[−c2γi] This factorization leads directly to the simple formulas

whereby probability of symbol error is based on a product of MGFs associated with each of the branch
SNRs. Unfortunately, neither EGC nor SC leads to this type of factorization. However, working with the
MGF of γΣ can sometimes lead to simpler results than working directly with its pdf. This is illustrated
in [19, Chapter 9.3.3], where the exact probability of symbol error for MPSK is obtained based on the
characteristic function associated with each branch SNR, where the characteristic function is just the
MGF evaluated at s = j2πf , i.e. it is the Fourier transform of the pdf. The resulting average error
probability, given by [19, Equation 9.78], is a finite-range integral over a sum of closed-form expressions,
and is thus easily evaluated numerically.

7.7.3 Diversity Analysis for Noncoherent and Differentially Coherent Modulation

A similar approach to determining the average symbol error probability of noncoherent and differentially
coherent modulations with diversity combining is presented in [10, 19]. This approach differs from that
of the coherent modulation case in that it relies on an alternate form of the Marcum Q-function instead
of the Gaussian Q-function, since the BER of noncoherent and differentially coherent modulations in
AWGN are given in terms of the Marcum Q-function. Otherwise the approach is essentially the same as
in the coherent case, and leads to BER expressions involving a single finite-range integral that can be
readily evaluated numerically. More details on this approach can be found in [10] and [19].

7.8 Transmitter Diversity

In transmit diversity there are multiple antennas available at the transmitter, and the transmitted signal
s(t) is sent over the ith antenna with a branch weight αi. Transmit diversity is desirable in systems such
as cellular systems where more space, power, processing capability is available on the transmit side versus
the receive side. The path gain associated with the ith antenna is riejθi , and the signals transmitted over
all antennas are added “in the air”, which leads to a received signal given by

r(t) =
M∑
i=1

αirie
jθis(t). (7.38)

This system works the same as with receiver diversity assuming that the transmit weights αi are the
same as if the diversity was implemented at the receiver, and the analysis is then also identical. Thus,
transmitter diversity provides the same diversity gains as receiver diversity. The complication of transmit
diversity is to obtain the channel phase and, for SC and MRC, the channel gain, at the transmitter. These
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channel values can be measured at the receiver using a pilot technique and then fed back to the transmitter.
Alternatively, in cellular systems with time-division, the base station can measure the channel gain and
phase on transmissions from the mobile to the base, and then use these measurements in transmitting
back to the mobile, since under time-division the forward and reverse links are reciprocal.

Other forms of transmit diversity use space-time coding. A particularly simple and prevalent scheme
for this was developed by Alamouti in [11]. In Alamouti’s space-time code, two transmit antennas use a
simple repetition code, which is decoded in the receiver using maximum-likelihood decoding. This scheme
provides the same diversity gain as two-branch MRC in the receiver, but also requires knowledge of the
channel gain and phase associated with each of the transmit antennas. More details on Alamouti’s code
and more sophisticated space-time codes are discussed in Chapter 10.2.
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Chapter 7 Problems

1. Find the outage probability of QPSK modulation at Ps = 10−3 for a Rayleigh fading channel with
SC diversity for M = 1 (no diversity), M = 2, and M = 3. Assume branch SNRs γ1 = 10 dB,
γ2 = 15 dB, and γ3 = 20 dB

2. Plot the pdf pγΣ(γ) given by (7.8) for the selection-combiner SNR in Rayleigh fading with M branch
diversity assuming M = 1, 2, 4, 8, and 10. Assume each branch has average SNR of 10 dB. Your
plot should be linear on both axes and should focus on the range of linear γ values 0 ≤ γ ≤ 60.
Discuss how the pdf changes with increasing M and why that leads to lower probability of error.

3. Derive the average probability of bit error for DPSK under SC with i.i.d. Rayleigh fading on each
branch as given by (7.9).

4. Derive a general expression for the CDF of the SSC output SNR for branch statistics that are
not i.i.d. and show that it reduces to (7.10) for i.i.d. branch statistics. Evaluate your expression
assuming Rayleigh fading in each branch with different average SNRs γ1 and γ2.

5. Derive the average probability of bit error for DPSK under SSC with i.i.d. Rayleigh fading on each
branch as given by (7.14).

6. Compare the average probability of bit error for DPSK under no diversity, SC, and SSC, assuming
i.i.d. Rayleigh fading on each branch and an average branch SNR of 10 dB and of 20 dB. How does
the relative performance change as the branch SNR increases.

7. Plot the average probability of bit error for DPSK under SSC with M = 2, 3, and 4, assuming i.i.d.
Rayleigh fading on each branch and an average branch SNR ranging from 0 to 20 dB.

8. Show that the weights αi that maximize γΣ under MRC are α2
i = r2i /N for N the common noise

power on each branch. Also show that with these weights, γΣ =
∑
i γi.

9. Derive the average probability of bit error for BPSK under MRC with i.i.d. Rayleigh fading on
each branch as given by (7.18).

10. Derive the average probability of bit error for BPSK under EGC with i.i.d. Rayleigh fading on each
branch as given by (7.23).

11. Compare the average probability of bit error for BPSK modulation under no diversity, two-branch
SC, two-branch SSC, two-branch EGC, and two-branch MRC. Assume i.i.d. Rayleigh fading on
each branch with equal branch SNR of 10 dB and of 20 dB. How does the relative performance
change as the branch SNR increases.

12. Plot the average probability of bit error for BPSK under both MRC and EGC assuming two-branch
diversity with i.i.d. Rayleigh fading on each branch and average branch SNR ranging from 0 to 20
dB. What is the maximum dB penalty of EGC as compared to MRC?

13. Compare the outage probability of BPSK modulation at Pb = 10−3 under MRC and under EGC
assuming two-branch diversity with i.i.d. Rayleigh fading on each branch and average branch SNR
γ=10 dB.

14. Compare the average probability of bit error for BPSK under MRC and under EGC assuming
two-branch diversity with i.i.d. Rayleigh fading on each branch and average branch SNR γ=10 dB.
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15. Consider a fading channel with BPSK modulation, 3 branch diversity with MRC, where each branch
experiences independent fading with an average received SNR of 15 dB. Compute the average BER
of this channel for Rayleigh fading and for Nakagami fading with m = 2 (Using the alternate Q
function representation greatly simplifies this computation, at least for Nakagami fading).

16. Consider a fading channel with BPSK modulation, 3 branch diversity with MRC, where each branch
experiences independent fading with an average received SNR of 15 dB. Compute the average BER
of this channel for Rayleigh fading and for Nakagami fading with m = 2 (Using the alternate Q
function representation greatly simplifies this computation, at least for Nakagami fading).

17. Plot the average probability of error as a function of branch SNR for a two branch MRC system
with BPSK modulation, where the first branch has Rayleigh fading and the second branch has
Nakagami-m fading with m=2. Assume the two branches have the same average SNR, and your
plots should have that average branch SNR ranging from 5 to 20 dB.

18. Plot the average probability of error as a function of branch SNR for an M -branch MRC system
with 8PSK modulation for M = 1, 2, 4, 8. Assume each branch has Rayleigh fading with the same
average SNR. Your plots should have an SNR that ranges from 5 to 20 dB.

19. Derive the average probability of symbol error for MQAM modulation under MRC diversity given
by (7.37) from the probability of error in AWGN (6.80) by utilizing the alternate representation of
Q and Q2,

20. Compare the average probability of symbol error for 16PSK and 16QAM modulation, assuming
three-branch MRC diversity with Rayleigh fading on the first branch and Ricean fading on the
second and third branches with K = 2. Assume equal average branch SNRs of 10 dB.

21. Plot the average probability of error as a function of branch SNR for an M -branch MRC system
with 16QAM modulation for M = 1, 2, 4, 8. Assume each branch has Rayleigh fading with the same
average SNR. Your plots should have an SNR that ranges from 5 to 20 dB.
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Chapter 8

Coding for Wireless Channels

Error correction codes provide the capability for bit errors introduced by transmission of a modulated
signal through a wireless channel to be either detected or corrected by a decoder in the receiver. In this
chapter we describe codes designed for errors introduced by AWGN channels and by fading channels.
Fading channel codes are either designed specifically for fading channels or are based on using AWGN
channel codes combined with interleaving. The basic idea behind coding and interleaving is to randomizes
the location of errors that occur in bursts, since most codes designed for AWGN channels do not work
well when there is a long sequence of errors. Thus, the interleaver disburses the location of errors occuring
in bursts such that just a few simultaneous errors occur, which can typically be corrected by most AWGN
codes.

We first discuss the basic design parameters in coding, including coding gain, rate penalty, and
bandwidth expansion. We next describe block and convolutional codes. These coding methods have
been around for many decades, but often require increased bandwidth or reduced data rate in exchange
for their error correction capabilities. We will also discuss the use of block or convolutional codes in
conjunction with a block or convolutional interleaver for use in fading channels. Concatenated codes and
their evolution to turbo and low density parity check codes are covered next. These extremely powerful
codes exhibit near-capacity performance with reasonable complexity levels, and are being implemented
in current wireless standards. All of these coding techniques provide coding gain at a cost of increased
bandwidth or reduced data rate. Trellis codes were invented in the late 1970s as a technique to obtain
error correction without rate or bandwidth penalty through a joint design of the modulation and coding.
We will discuss the basic design principle behind trellis and more general lattice codes for both AWGN
and fading channels. We conclude the chapter with a discussion of unequal error protection codes and
joint source and channel coding.

8.1 Code Design Considerations

The main reason to apply error correction coding in a wireless system is to reduce the probability of bit
error Pb. The amount of Pb reduction is typically characterized by the coding gain of a code. Coding gain
for a given code is defined as the amount that the SNR can be reduced under the coding technique for a
given Pb. Coding gain is illustrated in Figure 8.1. We see in this figure that the gain Cg1 at Pb = 10−4

is less than the gain Cg2 at Pb = 10−6, and there is negligible coding gain at Pb = 10−2. In fact some
codes have negative coding gain at low SNRs, since the extra redundancy required in the code does not
provide sufficient performance gain at these SNRs to yield a positive coding gain. Obviously, a system
designer tries to avoid using a code with negative coding gain. However, since the coding gain varies with
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SNR, it might not be possible to insure that any given code has a positive coding gain due to random
fluctuations in the channel SNR.

UncodedCoded

10−6

10

10

−4

−2

Cg1

Cg2

P
b

SNR (dB)

Figure 8.1: Coding Gain.

For many codes, the error correction capability of a code does not come for free. This performance
enhancement is paid for by increased complexity and, for block codes, convolutional codes, turbo codes,
and LDPC codes, by either a decreased data rate or increase in signal bandwidth. Specifically, if the data
rate through the channel is fixed at Rb, then the information rate for a code that uses n coded bits for
every k uncoded bits is k

nRb, i.e. coding decreases the data rate by the fraction k/n. However, we can
keep the information rate constant and introduce coding gain by decreasing the bit time by k/n. This
typically results in an expanded bandwidth of the transmittted signal by n/k. Coded modulation uses
a joint design of the code and modulation to obtain coding gain without this bandwidth expansion, as
discussed in more detail in Section 8.7.

8.2 Linear Block Codes

Linear block codes are conceptually simple codes that are basically an extension of 1-bit parity check codes
for error detection. A 1-bit parity check code is one of the most common forms of detecting transmission
errors. This code uses one extra bit in a block of n data bits to indicate whether the number of 1s in a
block is odd or even. Thus, if a single error occurs, either the parity bit is corrupted or the number of
detected 1s in the information bit sequence will be different from the number used to compute the parity
bit: in either case the parity bit will not correspond to the number of detected 1s in the information bit
sequence, so the single error is detected. Linear block codes extend this notion by using a larger number
of parity bits to either detect more than one error or correct for one or more errors. Unfortunately linear
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block codes, along with convolutional codes, trade their error detection or correction capability for either
bandwidth expansion or a lower data rate, as will be discussed in more detail below. We will restrict our
attention to binary codes, where both the original information and the corresponding code consist of bits
taking a value of either 0 or 1.

8.2.1 Binary Linear Block Codes

A binary block code generates a block of n coded bits from k information bits. We call this an (n, k)
binary block code. The coded bits are also called codeword symbols. The n codeword symbols can
take on 2n possible values corresponding to all possible combinations of the n binary bits. We select
2k codewords from these 2n possibilities to form the code, such that each k bit information block is
uniquely mapped to one of these 2k codewords. The rate of the code is Rc = k/n information bits per
codeword symbol. If we assume that codeword symbols are transmitted across the channel at a rate of
Rs symbols/second, then the information rate associated with an (n, k) block code is Rb = RcRs = k

nRs
bits/second. Thus we see that block coding reduces the data rate compared to what we obtain with
uncoded modulation by the code rate Rc.

A block code is called a linear code when the mapping of the k information bits to the n codeword
symbols is a linear mapping. In order to describe this mapping and the corresponding encoding and
decoding functions in more detail, we must first discuss properties of the vector space of binary n-tuples
and its corresponding subspaces. The set of all binary n-tuples Bn is a vector space over the binary field,
which consists of the two elements 0 and 1. All fields have two operations, addition and multiplication:
for the binary field these operations correspond to binary addition (modulo 2 addition) and standard
multiplication. A subset S of Bn is called a subspace if it satisfies the following conditions:

1. The all-zero vector is in S.

2. The set S is closed under addition, such that if Si ∈ S and Sj ∈ S, then Si + Sj ∈ S.

An (n, k) block code is linear if the 2k length-n codewords of the code form a subspace of Bn. Thus, if
Ci and Cj are two codewords in an (n, k) linear block code, then Ci + Cj must form another codeword
of the code.

Example 8.1: The vector space B3 consists of all binary tuples of length 3:
B3 = {000, 001, 010, 011, 100, 101, 110, 111}.
Note that B3 is a subspace of itself, since it contains the all zero vector and is closed under addition.
Determine which of the following subsets of B3 form a subspace:

• S1 = {000, 001, 100, 101}
• S2 = {000, 100, 110, 111}
• S3 = {001, 100, 101}

Solution: It is easily verified that S1 is a subspace, since it contains the all-zero vector and the sum
of any two tuples in S1 is also in S1. S2 is not a subspace since it is not closed under addition, as
110+111 = 001 6∈ S2. S3 is not a subspace since, although it is closed under addition, it does not contain
the all zero vector.
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Intuitively, the greater the distance between codewords in a given code, the less chance that errors
introduced by the channel will cause a transmitted codeword to be decoded as a different codeword. We
define the Hamming distance between two codewords Ci and Cj, denoted as d(Ci,Cj) or dij , as the
number of elements in which they differ:

dij =
n∑
l=1

Ci(l) + Cj(l), (8.1)

where Cm(l) denotes the lth bit in Cm(l). For example, if Ci = [00101] and Cj = [10011] then dij = 3.
We define the weight of a given codeword Ci as the number of 1s in the codeword, so Ci = [00101] has
weight 2. The weight of a given codeword Ci is just its Hamming distance d0i with the all zero codeword
C0 = [00 . . . 0] or, equivalently, the sum of its elements:

w(Ci) =
n∑
l=1

Ci(l). (8.2)

Since 0 ⊕ 0 = 1 ⊕ 1 = 0, the Hamming distance between Ci and Cj is equal to the weight of Ci ⊕ Cj.
For example, with Ci = [00101] and Cj = [10011] as given above, w(Ci) = 2, w(Cj) = 3, and dij =
w(Ci⊕Cj) = w([10110]) = 3. Since the Hamming distance between any two codewords equals the weight
of their sum, we can determine the minimum distance between all codewords in a code by just looking at
the minimum distance between all codewords and the all zero codeword. Thus, we define the minimum
distance of a code as

dmin = min
i,i6=0

d0i. (8.3)

We will see in Section 8.2.6 that the minimum distance of a linear block code is a critical parameter in
determining its probability of error.

8.2.2 Generator Matrix

The generator matrix is a compact description of how codewords are generated from information bits
in a linear block code. The design goal in linear block codes is to find generator matrices such that
their corresponding codes are easy to encode and decode yet have powerful error correction/detection
capabilities. Consider an (n, k) code with k information bits denoted as

Ui = [ui1, . . . , uik]

that are encoded into the codeword
Ci = [ci1, . . . , cin].

We represent the encoding operation as a set of n equations defined by

cij = ui1g1j + ui2g2j + . . .+ uikgkj , j = 1, . . . , n, (8.4)

where g is binary (0 or 1) and binary (standard) multiplication is used. We can write these n equations
in matrix form as

Ci = UiG, (8.5)

where the k × n generator matrix G for the code is defined as

G =



g11 g12 . . . g1n
g21 g22 . . . g2n
...

...
...

...
gk1 gk2 . . . gkn


 . (8.6)
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If we denote the lth row of G as gl = [gl1, . . . , gln] then we can write any codeword Ci as linear combi-
nations of these row vectors as follows:

Ci = ui1g1 + ui2g2 + . . .+ uikgk. (8.7)

Since a linear (n, k) block code is a subspace of dimension k, the k row vectors {gl}kl=1 of G must be
linearly independent, so that they span the k-dimensional subspace associated with the 2k codewords.
Hence, G has rank k. Since the set of basis vectors for this subspace is not unique, the generator matrix
is also not unique.

A systematic linear block code is described by a generator matrix of the form

G = [Ik|P] =




1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣

p11 p12 . . . p1(n−k)
p21 p22 . . . p2(n−k)
...

...
...

...
pk1 pk2 . . . pk(n−k)


 , (8.8)

where Ik is a k × k identity matrix and P is a k × (n − k) matrix called a parity check matrix that
determines the redundant, or parity, bits to be used for error correction or detection. The codeword
output from a systematic encoder is of the form

Ci = UiG = Ui[Ik|P] = [ui1, . . . , uik, p1, . . . , p(n−k)] (8.9)

where the first k bits of the codeword are the original information bits and the last (n − k) bits of the
codeword are the parity bits obtained from the information bits as

pj = ui1p1j + . . .+ uikpkj , j = 1, . . . , n− k. (8.10)

Note that any generator matrix for an (n, k) linear block code can be reduced by row operations and
column operations to a generator matrix with the systematic form.

Example 8.2: Systematic linear block codes are typically implemented with linear shift registers, with
n − k modulo-2 adders tied to the appropriate stages of the shift register. The resulting parity bits are
appended to the end of the information bits to form the codeword. Find the linear shift register for
generating a (7, 4) binary code corresponding to the generator matrix

G =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣∣
1 1 0
1 0 1
0 0 1
0 1 0


 . (8.11)

Solution: The matrix G is already in systematic form with parity check matrix

P =




1 1 0
1 0 1
0 0 1
0 1 0


 . (8.12)

Let Plj denote the ljth element of P. From (8.10), we see that the first parity bit in the codeword is
p1 = ui1P11+ui2P21+ui3P31+ui4P41 = ui1+ui2. Similarly, the second parity bit is p2 = ui1P12+ui2P22+
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ui3P32+ui4P42 = ui1+ui4 and the third parity bit is p3 = ui1P13+ui2P23+ui3P33++ui3P43 = ui2+ui3. The
shift register implementation to generate these partiy bits is shown in the following figure. The codeword
output is [ui1ui1ui1ui1p1p1p1], where the switch is in the down position to output the systematic bits
uij , j = 1, . . . , 4 of the code, and in the up position to output the parity bits pj , j = 1, 2, 3 of the code.

+ + +

u i1
u u ui2 i3 i4

p1 2p 3p

Figure 8.2: Shift register implementation of (7,4) binary code.

8.2.3 Parity Check Matrix and Syndrome Testing

The parity check matrix is used to decode linear block codes with generator matrix G. The parity check
matrix H corresponding to a generator matrix G = [Ik|P] is defined as

H = [In−k|PT ]. (8.13)

It is easily verified that GHT = 0k,n−k, where 0k,n−k denotes an all zero k× (n− k) matrix. Recall that
a given codeword Ci in the code is obtained by multiplication of the information bit sequence Ui by the
generator matrix G: Ci = UiG. Thus,

CiHT = UiGHT = 0n−k (8.14)

for any input sequence Ui, where 0n−k denotes the all-zero row vector of length n−k. Thus, multiplication
of any valid codeword with the parity check matrix results in an all zero vector. This property is used to
determine whether the received vector is a valid codeword or has been corrupted, based on the notion of
syndrome testing, which we now define.

Let R be the received codeword resulting from transmission of codeword C. In the absence of channel
errors, R = C. However, if the transmission is corrupted, one or more of the codeword symbols in R will
differ from those in C. We therefore write the received codeword as

R = C + e, (8.15)

where e = [e1e2 . . . en] is the error vector indicating which codeword symbols were corrupted by the
channel. We define the syndrome of R as

S = RHT . (8.16)

If R is a valid codeword, i.e. R = Ci for some i, then S = CiHT = 0n−k by (8.14). Thus, the syndrome
equals the all zero vector if the transmitted codeword is not corrupted, or is corrupted in a manner such
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that the received codeword is a valid codeword in the code that is different from the transmitted codeword.
If the received codeword R contains detectable errors, then S 6= 0n−k. If the received codeword contains
correctable errors, then the syndrome identifies the error pattern corrupting the transmitted codeword,
and these errors can then be corrected. Note that the syndrome is a function only of the error pattern e
and not the transmitted codeword C, since

S = RHT = (C + e)HT = CHT + eHT = 0n−k + eHT . (8.17)

Since S = eHT corresponds to n − k equations in n unknowns, there are 2k possible error patterns
that can produce a given syndrome S. However, since the probability of bit error is typically small and
independent for each bit, the most likely error pattern is the one with minimal weight, corresponding to
the least number of errors introduced in the channel. Thus, if an error pattern ê is the most likely error
associated with a given syndrome S, the transmitted codeword is typically decoded as

Ĉ = R + ê = C + e + ê. (8.18)

When the most likely error pattern does occur, i.e. ê = e, then Ĉ = C, i.e. the corrupted codeword is
correctly decoded. The decoding process and associated error probability will be covered in Section 8.2.6.

Let Cw denote the codeword in a given (n, k) code with minimum weight (excluding the all-zero
codeword). Then CwHT = 0n−k is just the sum of dmin columns of HT , since dmin equals the number
of 1s (the weight) in the minimum weight codeword of the code. Since the rank of HT is at most n− k,
this implies that the minimum distance of an (n, k) block code is upperbounded by

dmin ≤ n− k + 1. (8.19)

8.2.4 Cyclic Codes

Cyclic codes are a subclass of linear block codes where all codewords in a given code are cyclic shifts of
one another. Specifically, if the codeword C = (c0c1 . . . cn−1) is a codeword in a given code, then a cyclic
shift by 1, denoted as C(1) and equal to C(1) = (cn−1c1 . . . cn−2) is also a codeword. More generally, any
cyclic shift C(i) = (cn−icn−i+1 . . . cn−i−1) is also a codeword. The cyclic nature of cyclic codes creates a
nice structure that allows their encoding and decoding functions to be of much lower complexity than
the matrix multiplications associated with encoding and decoding for general linear block codes. Thus,
most linear block codes used in practice are cyclic codes.

Cyclic codes are generated via a generator polynomial instead of a generator matrix. The generator
polynomial g(X) for an (n, k) cyclic code has degree n− k and is of the form

g(X) = g0 + g1X + . . .+ gn−kXn−k, (8.20)

where gi is binary (0 or 1) and g0 = gn−k = 1. The k-bit information sequence (u0 . . . uk−1) is also written
in polynomial form as the message polynomial

u(X) = u0 + u1X + . . .+ uk−1X
k−1. (8.21)

The codeword associated with a given k-bit information sequence is obtained from the polynomial coef-
ficients of the generator polynomial times the message polynomial, i.e. the codeword C = (c0 . . . cn−1) is
obtained from

c(X) = u(X)g(X) = c0 + c1X + . . .+ cn−1X
n−1. (8.22)
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A codeword described by a polynomial c(X) is a valid codeword for a cyclic code with generator polyno-
mial g(X) if and only if g(X) divides c(X) with no remainder (no remainder polynomial terms), i.e.

c(X)
g(X)

= q(X) (8.23)

for a polynomial q(X) of degree less than k.

Example 8.3:
Consider a (7, 4) cyclic code with generator polynomial g(X) = 1+X2 +X3. Determine if the codewords
described by polynomials c1(X) = 1 +X2 +X5 +X6 and c2(X) = 1 +X2 + +X3 +X5 +X6 are valid
codewords for this generator polynomial.

Solution: Division of binary polynomials is similar to division of standard polynomials except that under
binary addition, subtraction is the same as addition. Dividing c1(X) = 1 + X2 + X5 + X6 by g(X) =
1 +X2 +X3, we have

X3 + 1
X3 +X2 + 1

/
X6. +X5 +X2 + 1
X6 +X5 +X3

X3 +X2 + 1
X3 +X2 + 1

0.

(8.24)

Since g(X) divides c(X) with no remainder, it is a valid codeword. In fact, we have c1(X) = (1 +
X3)g(X) = u(X)g(X), so the information bit sequence corresponding to c1(X) is U = [1001] correspond-
ing to the coefficients of the message polynomial u(X) = 1 +X3.

Dividing c2(X) = 1 +X2 +X3 +X5 +X6 by g(X) = 1 +X2 +X3, we have

X3 + 1
X3 +X2 + 1

/
X6. +X5 +X2 + 1
X6 +X5 +X3

X2 + 1

(8.25)

where we note that there is a remainder of X2 + 1 in the division. Thus, c2(X) is not a valid codeword
for the code corresponding to this generator polynomial.

Recall that systematic linear block codes have the first k codeword symbols equal to the information
bits, and the remaining codeword symbols equal to the parity bits. A cyclic code can be put in systematic
form by first multiplying the message polynomial u(X) by Xn−k, yielding

Xn−ku(X) = u0X
n−k + u1X

n−k+1 + . . .+ uk−1X
n−1. (8.26)
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This shifts the message bits to the k rightmost digits of the codeword polynomial. If we next divide
(8.26) by g(X), we obtain

Xn−ku(X)
g(X)

= q(X) +
p(X)
g(X)

, (8.27)

where q(X) is a polynomial of degree k − 1 and p(X) is a remainder polynomial of degree n − k − 1.
Multiplying (8.27) through by g(X) we obtain

Xn−ku(X) = q(X)g(X) + p(X). (8.28)

Adding p(X) to both sides yields

p(X) +Xn−ku(X) = q(X)g(X). (8.29)

This implies that p(X) +Xn−ku(X) is a valid codeword since it is divisible by g(X) with no remainder.
The codeword is described by the n coefficients of the codeword polynomial p(X) + Xn−ku(X). Note
that we can express p(X) (of degree n− k − 1) as

p(X) = p0 + p1X + . . . pn−k−1X
n−k−1. (8.30)

Combining (8.26) and (8.30) we get

p(X) +Xn−ku(X) = p0 + p1X + . . . pn−k−1X
n−k−1 + u0X

n−k + u1X
n−k+1 + . . .+ uk−1X

n−1. (8.31)

Thus, the codeword corresponding to this polynomial has the first k bits consisting of the message bits
[u0 . . . uk] and the last n−k bits consisting of the parity bits [p0 . . . pn−k−1], as is required for the systematic
form.

Note that the systematic codeword polynomial is generated in three steps: first multiplying the
message polynomial u(X) by Xn−k, then dividing Xn−ku(X) by g(X) to get the remainder polynomial
p(X) (along with the quotient polynomial q(X), which is not used), and finally adding p(X) to Xn−ku(X)
to get (8.31). The polynomial multiplications are trivial to implement, and the polynomial division is
easily implemented with a feedback shift register [2, 1]. Thus, codeword generation for systematic cyclic
codes has very low cost and low complexity.

Let us now consider how to characterize channel errors for cyclic codes. The codeword polynomial
corresponding to a transmitted codeword is of the form

c(X) = u(X)g(X). (8.32)

The received codeword can also be written in polynomial form as

r(X) = c(X) + e(X) = u(X)g(X) + e(X) (8.33)

where e(X) is the error polynomial of degree n − 1 with coefficients equal to 1 where errors occur. For
example, if the transmitted codeword is C = [1011001] and the received codeword is R = [1111000]
then e(X) = X +Xn−1. The syndrome polynomial for the received codeword s(X) is defined as the
remainder when r(X) is divided by g(X), so s(X) has degree n − k − 1. But by (8.33), e(X) is also
the remainder when r(X) is divided by g(X). Therefore, the syndrome polynomial s(X) is identical to
the error polynomial e(X). Moreover, we obtain the syndrome through a division circuit similar to the
one used for generating the code. As stated above, this division circuit is typically implemented using a
feedback shift register, resulting in a low-cost low-complexity implementation.
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8.2.5 Hard Decision Decoding (HDD)

The probability of error for linear block codes depends on whether the decoder uses soft decisions or
hard decisions. In hard decision decoding (HDD) each coded bit is demodulated as a 0 or 1, i.e. the
demodulator detects each coded bit (symbol) individually. For example, in BPSK, the received symbol
is decoded as a 1 if it is closer to

√
Eb and as a 0 if it is closer to −√

Eb. This form of decoding removes
information that can be used by the channel decoder. In particular, for the BPSK example the distance of
the received bit from

√
Eb and −√

Eb can be used in the channel decoder to make better decisions about
the transmitted codeword. When these distances are used in the channel decoder it is called soft-decision
decoding. Soft decision decoding of linear block codes is treated in Section 8.2.7.

Hard decision decoding typically uses minimum-distance decoding. In minimum-distance decoding
the n bits corresponding to a codeword are first demodulated, and the demodulator output is passed to
the decoder. The decoder compares this received codeword to the 2k possible codewords comprising
the code, and decides in favor of the codeword that is closest in Hamming distance (differs in the least
number of bits) to the received codeword. Mathematically, for a received codeword R the decoder uses
the formula

pick Cj s.t. d(Cj,R) ≤ d(Ci,R)∀i 6= j. (8.34)

If there is more than one codeword with the same minimum distance to R, one of these is chosen at
random by the decoder.

Maximum-likelihood decoding picks the transmitted codeword that has the highest probability of
having produced the received codeword, i.e. given the received codeword R, the maximum-likelihood
decoder choses the codeword Cj as

pick Cj s.t.p(R|Cj) ≥ p(R|Ci), i = 1, . . . , 2k. (8.35)

Since the most probable error event in an AWGN channel is the event with the minimum number of errors
needed to produce the received codeword, the minimum-distance criterion (8.34) and the maximum-
likelihood criterion (8.35) are equivalent. Once the maximum-likelihood codeword Ci is determined, it is
decoded to the k bits that produce codeword Ci.

Since maximum-likelihood detection of codewords is based on a distance decoding metric, we can
best illustrate this process in signal space, as shown in Figure 8.3. The minimum Hamming distance
between codewords, illustrated by the black dots in this figure, is dmin. Each codeword is centered inside
a circle of radius t = b.5(dmin−1)c, where bxc denotes the largest integer greater than or equal to x. The
shaded dots represent received codewords where one or more bits differ from those of the transmitted
codeword. The figure indicates that C1 and C2 differ by 3 bits, since there are two distinct codewords
in between them.

Minimum distance decoding can be used to either detect or correct errors. Detected errors in a
data block either cause the data to be dropped or a retransmission of the data. Error correction allows
the corruption in the data to be reversed. For error correction the minimum distance decoding process
ensures that a received codeword lying within a Hamming distance t from the transmitted codeword
will be decoded correctly. Thus, the decoder can correct up to t errors, as can be seen from Figure 8.3:
since received codewords corresponding to t or fewer errors will lie within the sphere centered around the
correct codeword, it will be decoded as that codeword using minimum distance decoding. We see from
Figure 8.3 that the decoder can detect all error patterns of dmin − 1 errors. In fact, a decoder for an
(n, k) code can detect 2n − 2k possible error patterns. The reason is that there are 2k − 1 nondetectable
errors, corresponding to the case where a corrupted codeword is exactly equal to a codeword in the set
of possible codewords (of size 2k) that is not equal to the transmitted codeword. Since there are 2n − 1
total possible error patterns, this yields 2n − 2k nondetectable error patterns.
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Figure 8.3: Maximum-Likelihood Decoding in Signal Space.

Example 8.4:
A (5, 2) code has codewords C0 = [00000], C1 = [01011], C2 = [10101], and C3 = [11110]. Suppose

the all zero codeword C0 is transmitted. Find the set of error patterns corresponding to nondetectable
errors for this codeword transmission.

Solution: The nondetectable error patterns correspond to the three nonzero codewords, i.e. e1 = [01011],
e2 = [10101], and e3 = [11110] are nondetectable error patterns, since adding any of these to C0 results
in a valid codeword.

8.2.6 Probability of Error for HDD in AWGN

The probability of codeword error Pe is defined as the probability that a transmitted codeword is decoded
in error. Under hard decision decoding a received codeword may be decoded in error if it contains more
than t errors (it will not be decoded in error if there is not alternative codeword closer to the received
codeword than the transmitted codeword). The error probability is thus bounded above by the probability
that more than t errors occur. Since the bit errors in a codeword occur independently on an AWGN
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channel, this probability is given by:

Pe ≤
n∑

j=t+1

(
n
j

)
pj(1 − p)n−j , (8.36)

where p is the probability of error associated with transmission of the bits in the codeword. Thus,
p corresponds to the error probability associated with uncoded modulation for the given energy per
codeword symbol, as treated in Chapter 6 for AWGN channels. For example, if the codeword symbols
are sent via coherent BPSK modulation, we have p = Q(

√
2Ec/N0), where Ec is the energy per codeword

symbol and N0 is the noise power spectral density. Since there are k/n information bits per codeword
symbol, the relationship between the energy per bit and the energy per symbol is Ec = kEb/n. Thus,
powerful block codes with a large number of parity bits (k/n small) reduce the channel energy per symbol
and therefore increases the error probability in demodulating the codeword symbols. However, the error
correction capability of these codes typically more than compensates for this reduction, especially at high
SNRs. At low SNRs this may not happen, in which case the code exhibits negative coding gain, i.e.
it performs worse than uncoded modulation. The bound (8.36) holds with equality when the decoder
corrects exactly t or fewer errors in a codeword, and cannot correct for more than t errors in a codeword.
A code with this property is called a perfect code.

At high SNRs the most likely way to make a codeword error is to mistake a codeword for one of its
nearest neighbors. Nearest-neighbor errors yield a pair of upper and lower bounds on error probability.
The lower bound is the probability of mistaking a codeword for a given nearest neighbor at distance dmin:

Pe ≥
dmin∑
j=t+1

(
dmin
j

)
pj(1 − p)dmin−j . (8.37)

The upper bound, a union bound, assumes that all of the other 2k − 1 codewords are at distance dmin
from the transmitted codeword. Thus, the union bound is just 2k − 1 times (8.37), the probability of
mistaking a given codeword for a nearest neighbor at distance dmin:

Pe ≤ (2k − 1)
dmin∑
j=t+1

(
dmin
j

)
pj(1 − p)dmin−j. (8.38)

When the number of codewords is large or the SNR is low, both of these bounds are quite loose.
A tighter upper bound can be obtained by applying the Chernoff bound, (P (X ≥ x) ≤ e−x2/2 for X

a zero-mean unit variance Gaussian random variable, to compute codeword error probability. Using this
bound it can be shown [3] that the probability of decoding the all-zero codeword as the jth codeword
with weight wj is upper bounded by

P (wj) ≤ [4p(1 − p)]wj/2. (8.39)

Since the probability of decoding error is upper bounded by the probability of mistaking the all-zero
codeword for any of the other codewords, we get the upper bound

Pe ≤
2k∑
j=2

[4p(1 − p)]wj/2. (8.40)

This bound requires the weight distribution {wj}2k

j=1 for all codewords (other than the all-zero codeword
corresponding to j = 1) in the code. A simpler, slightly looser upper bound is obtained from (8.40) by
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using dmin instead of the individual codeword weights. This simplification yields the bound

Pe ≤ (2k − 1)[4p(1 − p)]dmin/2. (8.41)

Note that the probability of codeword error Pe depends on p, which is a function of the Euclidean
distance between modulation points associated with the transmitted codeword symbols. In fact, the
best codes for AWGN channels should not be based on Hamming distance: they should be based on
maximizing the Euclidean distance between the codewords after modulation. However, this requires that
the channel code be designed jointly with the modulation. This is the basic concept of trellis codes and
turbo trellis coded modulation, which will be discussed in Section 8.7.

The probability of bit error after decoding the received codeword in general depends on the particular
code and decoder, in particular how bits are mapped to codewords, similar to the bit mapping procedure
associated with non-binary modulation. This bit error probability is often approximated as [1]

Pb ≈ 1
n

n∑
j=t+1

j

(
n
j

)
pj(1 − p)n−j , (8.42)

which, for t = 1, can be simplified to [1] Pb ≈ p − p(1 − p)n−1. At high SNRs and with good bit-to-
codeword mappings we can make the approximation that one codeword error corresponds to a single bit
error. With this approximation Pb = Pe/k, since there are k bits per codeword.

Example 8.5: Consider a (24,12) linear block code with a minimum distance dmin = 8 (an extended Go-
lay code, discussed in Section 8.2.8, is one such code). Find Pe based on the loose bound (8.41), assuming
the codeword symbols are transmitted over the channel using BPSK modulation with Eb/N0 = 10 dB.
Also find Pb for this code using the approximation Pb = Pe/k and compare with the bit error probability
for uncoded modulation.

Solution: For Eb/N0 = 10 dB=10, we have Ec/N0 = 12
2410 = 5. Thus, p = Q(

√
10) = 7.82 · 10−4. Using

this value in (8.41) with k = 12 and dmin = 8 yields Pe ≤ 3.92 · 10−7. Using the Pb approximation we get
Pb ≈ 1

kPe = 3.27 · 10−8. For uncoded modulation we have Pb = Q(
√

2Eb/N0) = Q(
√

20) = 3.87 · 10−6. So
we get over two orders of magnitude coding gain with this code. Note that the loose bound can be orders
of magnitude away from the true error probability, as we will see in the next example, so this calculation
may significantly underestimate the coding gain of the code.

Example 8.6: Consider a (5,2) linear block code with a minimum distance dmin = 3 (a Hamming code,
discussed in Section 8.2.8, is one such code). Find the union bound (8.38) and looser bound (8.41) assum-
ing the codeword symbols are transmitted over the channel using BPSK modulation with Eb/N0 = 10 dB.
Compare the probability of bit error associated with the union bound using the approximation Pb = Pe/k
with that of uncoded modulation. How does this comparison change if the SNR is fixed at 10 dB regard-
less of whether coding is used or not.

Solution: For Eb/N0 = 10 dB=10, we have Ec/N0 = 2
510 = 4. Thus, p = Q(

√
8) = 2.34 · 10−3.

In the union bound (8.38) we then substitute this value for p, dmin = 3, t = b.5(dmin − 1)c = 1,
and k = 2, which yields Pe ≤ 4.92 · 10−5, and the simpler bound (8.41) with the same p, dmin and
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k yields Pe ≤ 2.7 · 10−3. Thus, the loose bound is two orders of magnitude looser than the union
bound. Using the Pb approximation we get Pb ≈ 1

kPe = 2.46 · 10−5. Uncoded modulation yields
Pb = Q(

√
2Eb/N0) = Q(

√
20) = 3.87 ·10−6. Comparing this with the union bound, we see that the code

has negative gain relative to uncoded modulation, i.e. for a fixed Eb/N0 we get a lower Pb without coding
than with coding. This is because the (5,2) code is not that powerful, and we must spread the bit energy
over the entire codeword. However, if the SNR is fixed at 10 dB for both coded and uncoded modulation,
we have Ec/N0 = Eb/N0 = 10. Then p = 3.87 ·10−6 is the same as Pb for uncoded modulation. Using this
value of p in (8.38) we get Pe = 1.35 ·10−9 and the corresponding Pb = Pe/k = 5.40 ·10−11, which is much
less than in the uncoded case. Thus, the (5,2) code has powerful error correction capability if the transmit
power is constant, which results in the same Ec for coded modulation as Eb for uncoded modulation.

8.2.7 Probability of Error for SDD in AWGN

The HDD described in the previous section discards information that can reduce probability of codeword
error. For example, in BPSK, the transmitted signal constellation is ±√

Eb and the received symbol after
matched filtering is decoded as a 0 if it is closer to

√
Eb and as a 1 if it is closer to −√

Eb. Thus, the
distance of the received symbol from

√
Eb and −√

Eb is not used in decoding, yet this information can
be used to make better decisions about the transmitted codeword. When these distances are used in the
channel decoder it is called soft-decision decoding (SDD), since the demodulator does not make a hard
decision about whether a 0 or 1 bit was transmitted, but rather makes a soft decision corresponding to
the distance between the received symbol and the symbol corresponding to a 0 or a 1 bit transmission.
We now describe the basic premise of SDD for BPSK modulation: these ideas are easily extended to
higher level modulations.

Consider a codeword transmitted over a channel using BPSK. As in the case of HDD, the energy per
codeword symbol is Ec = k

nEb. If the jth codeword symbol is a 0, it will be received as rj =
√
Ec + nj

and if it is a 1, it will be received as rj = −√
Ec + nj , where nj is the AWGN noise sample of mean zero

and variance N0/2 associated with the receiver. In SDD, given a received codeword R = [r1, . . . , rn], the
decoder forms a correlation metric C(R,Ci) for each codeword Ci, i = 1, . . . , 2k in the code, and the
decoder choses the codeword Ci with the highest correlation metric. The correlation metric is defined as

C(R,Ci) =
n∑
j=1

(2cij − 1)rj , (8.43)

where cij denotes the jth coded bit in the codeword Ci. If cij = 1, 2cij−1 = 1 and if cij = 0, 2cij−1 = −1.
So the received codeword symbol is weighted by the polarity associated with the corresponding symbol
in the codeword for which the correlation metric is being computed. Thus, C(R,Ci) is large when most
of the received symbols have a large magnitude and the same polarity as the corresponding symbols in
Ci, is smaller when most of the received symbols have a small magnitude and the same polarity as the
corresponding symbols in Ci, and is typically negative when most of the received symbols have a different
polarity than the corresponding symbols in Ci. In particular, at very high SNRs, if Ci is transmitted
then C(R,Ci) ≈ n

√
Ec while C(R,Cj) < n

√
Ec for j 6= i.

For an AWGN channel, the probability of codeword error is the same for any codeword. Let us
assume the all zero codeword C1 is transmitted and the corresponding received codeword is R. To
correctly decode R, we must have that C(R,C1) > C(R,Ci), i = 2, . . . , 2k. Let wi denote the Hamming
weight of the ith codeword Ci, which equals the number of 1s in Ci. Then conditioned on the transmitted
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codeword C1, C(R,Ci) is Gauss-distributed with mean
√
Ecn(1 − 2wi/n) and variance nN0/2. Note

that the correlation metrics are not independent, since they are all functions of R. This complicates
computation of the exact probability of codeword error, but we can simplify the computation using the
union bound. Specifically, the probability Pe(Ci) that C(R,C1) < C(R,Ci) equals the probability that
a Gauss-distributed random variable with mean

√
nEc(1 − 2wi/n) and variance N0/2 is greater than a

Gauss-distributed random variable with mean
√
Ecn and the same variance. This probability is given by:

Pe(Ci) = Q

(√
nEc
N0

(1 − (1 − 2wi/n))

)
= Q

(√
RcEb
N0

(2wi))

)
= Q(

√
2Rcγbwi). (8.44)

Then by the union bound the average probability of error is upper bounded by the sum of pairwise error
probabilities relative to each Ci:

Pe ≤
2k∑
i=2

Pe(Ci) =
2k∑
i=2

Q(
√

2γbRcwi). (8.45)

The computation of (8.45) requires the weight distribution wi, i = 2, . . . , 2k of the code. This bound can
be simplified by noting that wi ≥ dmin, so

Pe ≤ (2k − 1)Q(
√

2γbRcdmin). (8.46)

A well-known bound on the Q function is Q(
√

2x) < exp[−x]. Applying this bound to (8.45) yields

Pe ≤ (2k − 1)e−γbRcdmin < 2ke−γbRcdmin = e−γbRcdmin+k ln 2. (8.47)

Comparing this bound with that of uncoded BPSK modulation

Pb = Q(
√

2γb) < e−γb , (8.48)

we get a dB coding gain of approximately

Gc = 10 log10[(γbRcdmin − k ln 2)/γb] = 10 log10[Rcdmin − k ln 2/γb]. (8.49)

Note that the coding gain depends on the code rate, the number of information bits per codeword, the
minimum distance of the code, and the channel SNR. In particular, the coding gain decreases with γb,
and becomes negative at sufficiently low SNRs. In general the performance of SDD is about 2 dB better
than HDD [2, Chapter 8.1].

Example 8.7: Find the approximate coding gain of SDD over uncoded modulation for the (24,12) code
with dmin = 8 considered in Example 8.2.6 above, with γb = 10 dB.

Solution: Setting γb = 10, Rc = 12/24, dmin = 8, and k = 12 in (8.49) yields Gc = 5 dB. This significant
coding gain is a direct result of the large minimum distance of the code.
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8.2.8 Common Linear Block Codes

We now describe some common linear block codes. More details can be found in [1, 2, 4]. The most
common type of block code is a Hamming code, which is parameterized by an integer m ≥ 2. For an
(n, k) Hamming code, n = 2m − 1 and k = 2m −m− 1, so n− k = m redundant bits are introduced by
the code. The minimum distance of all Hamming codes is dmin = 3, so t = 1 error in the n = 2m − 1
codeword symbols can be corrected. Although Hamming codes are not very powerful, they are perfect
codes, and therefore have probability of error given exactly by the right side of (8.36).

Golay and extended Golay codes are another class of channel codes with good performance. The
Golay code is a linear (23,12) code with dmin = 7 and t = 3. The extended Golay code is obtained
by adding a single parity bit to the Golay code, resulting in a (24,12) block code with dmin = 8 and
t = 3. The extra parity bit does not change the error correction capability since t remains the same, but
it greatly simplifies implementation since the information bit rate is one half the coded bit rate. Thus,
both uncoded and coded bit streams can be generated by the same clock using every other clock sample
to generate the uncoded bits. These codes have higher dmin and thus better error correction capabilities
than Hamming codes, at a cost of more complex decoding and a lower code rate Rc = k/n. The lower
code rate implies that the code either has a lower data rate or requires additional bandwidth.

Another powerful class of block codes is the Bose-Chadhuri-Hocquenghem (BCH) codes. These codes
are cyclic codes, and typically outperform all other block codes with the same n and k at moderate to
high SNRs. This code class provides a large selection of block lengths, code rates, and error correction
capabilities. In particular, the most common BCH codes have n = 2m − 1 for any integer m ≥ 3.

The Pb for a number of BCH codes under hard decision decoding and coherent BPSK modulation is
shown in Figure 8.4. The plot is based on the approximation (8.42) where, for coherent BPSK, we have

p = Q

(√
2Ec
N0

)
= Q

(√
2Rcγb

)
. (8.50)

In this figure the BCH (127,36) code actually has a negative coding gain at low SNRs. This is not
uncommon for powerful channel codes due to their reduced energy per symbol, as was discussed in
Section 8.2.5.

8.2.9 Nonbinary Block Codes: the Reed Solomon Code

A nonbinary block code has similar properties as the binary code: it has K information bits mapped into
codewords of length N . However the N codeword symbols of each codeword are chosen from a nonbinary
alphabet of size q > 2. Thus, the codeword symbols can take any value in {0, 1 . . . , q−1}. Usually q = 2k

so that k information bits can be mapped into one codeword symbol.
The most common nonbinary block code is the Reed Soloman (RS) code, used in a range of applica-

tions from magnetic recording to Cellular Digital Packet Data (CDPD). RS codes have N = q−1 = 2k−1
and K = 1, 2, . . . , N − 1. The value of K dictates the error correction capability of the code. Specifically,
a RS code can correct up to t = .5(N −K) codeword symbol errors. In nonbinary codes the minimum
distance between codewords is defined as the number of codeword symbols in which the codewords differ.
RS codes achieve a minimum distance of dmin = N − K + 1, which is the largest possible minimum
distance between codewords for any linear code with the same encoder input and output block lengths.

Since nonbinary codes, and RS codes in particular, generate symbols corresponding to 2k bits, they
are well-matched to M -ary modulation techniques for M = 2k. In particular, with 2k-ary modulation
each codeword symbol is transmitted over the channel as one of 2k possible constellation points. If the
error probability associated with the modulation (the probability of mistaking the received constellation
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Figure 8.4: Pb for different BCH codes.

point for a constellation point other than the transmitted point) is PM , then the probability of symbol
error associated with the nonbinary code is upper bounded by

Ps ≤
N∑

j=t+1

(
N
j

)
P jM (1 − PM )N−j, (8.51)

similar to the form for the binary code (8.36). The probability of bit error is then

Pb =
2k−1

2k − 1
Ps. (8.52)

8.2.10 Block Coding and Interleaving for Fading Channels

In fading channels errors associated with the demodulator tend to occur in bursts, corresponding to
the times when the channel is in a deep fade. However, codes designed for AWGN channels cannot
typically correct for error bursts longer than t, their error correction capability. In practice slowly fading
channels exhibit error bursts much longer than the t associated with codes of reasonable complexity.
Therefore, on fading channels, coding is typically combined with interleaving to mitigate the effect of
error bursts. The basic premise of coding and interleaving is to spread error bursts due to deep fades
over many codewords, such that each received codeword only exhibits a few simultaneous symbol errors,
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which can be corrected for. The spreading out of burst errors is accomplished by an interleaver and the
error correction is accomplished by the code. The size of the interleaver must be large enough so that
each symbol in the codeword exhibits independent fading when transmitted over the channel. Slowly
fading channels require large interleavers, which in turn can lead to large delays, as we now discuss in
more detail.

A block interleaver is an array with d rows and n columns, as shown in Figure 8.5. For block inter-
leavers designed for an (n, k) block code, codewords are read into the interleaver by rows so that each
row contains an (n, k) codeword. The interleaver contents are read out by columns into the modula-
tor for subsequent transmission over the channel. During transmission codeword symbols in the same
codeword are separated by d − 1 other symbols, so symbols in the same codeword experience approxi-
mately independent fading if their separation in time is greater than the channel coherence time: i.e. if
dTs > Tc ≈ 1/Bd, where Ts is the codeword symbol duration, Tc is the channel coherence time, and Bd is
the channel Doppler. An interleaver is called a deep interleaver if the condition dTs > Tc is satisfied.
The deinterleaver is an array identical to the interleaver. Bits are read into the deinterleaver from the
demodulator by column so that each row of the deinterleaver contains a codeword (whose bits have been
corrupted by the channel.) The deinterleaver output is read into the decoder by rows, i.e. one codeword
at a time.

Figure 8.5 illustrates the ability of coding and interleaving to correct for bursts of errors. Suppose
our coding scheme is an (n, k) binary block code with error correction capability t = 2. If this codeword is
transmitted through a channel with an error burst of three symbols, then three out of four of the codeword
symbols will be received in error. Since the code can only correct 2 or fewer errors, the codeword will be
decoded in error. However, if the codeword is put through an interleaver then, as shown in Figure 8.5, the
error burst of three symbols will be spread out over three separate codewords. Since a single symbol error
can be easily corrected by an (n, k) code with t = 2, the original information bits can be decoded without
error. Convolutional interleavers are similar in concept to block interleavers, and are better suited to
convolutional codes, as will be discussed in Section 8.3.7.

To analyze the performance of coding and interleaving, we approximate error bursts caused by
Rayleigh fading as independent errors caused by AWGN with codeword symbol error probability deter-
mined by the average probability of error in fading. In particular, the probability of error bounds in
Sections 8.2.6 are used to determine the probability of error for block codes with interleaving transmit-
ted over fading channels with HDD. The probability of symbol error p in these bounds corresponds to
the codeword symbol error probability in fading as determined in Chapter 6. For example, for BPSK
modulation in Rayleigh fading,

p =
1
2

[
1 −

√
γb

1 + γb

]
. (8.53)

Coding and interleaving is a suboptimal coding technique, since the correlation of the fading which
affects subsequent bits contains information about the channel which could be used in a true maximum-
likelihood decoding scheme. By essentially throwing away this information, the inherent capacity of the
channel is decreased [5]. Despite this capacity loss, interleaving codes designed for AWGN is a common
coding technique for fading channels, since the complexity required to do maximum-likelihood decoding
on correlated coded symbols is prohibitive. More details on code design for fading channels and their
performance can be found in [2, Section 14.6].

Example 8.8: Consider a Rayleigh fading channel with a Doppler of Bd = 80 Hz. The system uses a
(5,2) block code and interleaving to compensate for the fading. If the codeword symbols are sent through
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Figure 8.5: The Interleaver/De-interleaver operation.

the channel at 30 Kbps, what is the required interleaver depth to obtain independent fading on each sym-
bol. What is the longest burst of codeword symbol errors that can be corrected and the total interleaver
delay for this depth?
Solution: The (5,2) code has a minimum distance of 3 so it can correct t = .5(3−1) = 1 codeword symbol
error. The codeword symbols are sent through the channel at a rate Rs = 30 Kbps, so the symbol time
is Ts = 1/Rs = 3.3 · 10−5. Assume a coherence time for the channel of Tc = 1/Bd = .0125 s. The bits
in the interleaver are separated by dTs, so we require dTs ≥ Tc for independent fading on each codeword
symbol. Solving for d yields d ≥ Tc/Ts = 375. Since the interleaver spreads a burst of errors over the
depth d of the interleaver, a burst of d symbol errors in the interleaved codewords will result in just one
symbol error per codeword after deinterleaving, which can be corrected. So the system can tolerate an
error burst of 375 symbols. However, all rows of the interleaver must be filled before it can read out by
columns, hence the total delay of the interleaver is ndTs = 5 · 375 · 3.3 · 10−5 = 62.5 msec. This delay
exceeds the delay that can be tolerated in a voice system. We thus see that the price paid for correcting
long error bursts through coding and interleaving is significant delay.
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8.3 Convolutional Codes

A convolutional code generates coded symbols by passing the information bits through a linear finite-state
shift register, as shown in Figure 8.6. The shift register consists of K stages with k bits per stage. There
are n binary addition operators with inputs taken from all K stages: these operators produce a codeword
of length n for each k bit input sequence. Specifically, the binary input data is shifted into each stage of
the shift register k bits at a time, and each of these shifts produces a coded sequence of length n. The
rate of the code is Rc = k/n. The number of shift register stages K is called the constraint length of the
code. It is clear from Figure 8.6 that a length-n codeword depends on kK input bits, in contrast to a
block code which only depends on k input bits. Convolutional codes are said to have memory since the
current codeword depends on more input bits (kK) than the number input to the encoder to generate it
(k).

+ + +

1 2 . . . k 1 2 . . . k 1 2 . . . k. . .
k bits

1 2 . . . n
To modulator

Stage 1 Stage 2 Stage K

length−n codeword

Figure 8.6: Convolutional Encoder.

8.3.1 Code Characterization: Trellis Diagrams

When a length-n codeword is generated by a convolutional encoder, this codeword depends both on the
k bits input to the first stage of the shift register as well as the state of the encoder, defined as the
contents in the other K − 1 stages of the shift register. In order to characterize a convolutional code, we
must characterize how the codeword generation depends both on the k input bits and the encoder state,
which has 2K−1 possible values. There are multiple ways to characterize convolutional codes, including a
tree diagram, state diagram, and trellis diagram [2]. The tree diagram represents the encoder in the form
of a tree where each branch represents a different encoder state and the corresponding encoder output.
A state diagram is a graph showing the different states of the encoder and the possible state transitions
and corresponding encoder outputs. A trellis diagram uses the fact that the tree representation repeats
itself once the number of stages in the tree exceeds the constraint length of the code. The trellis diagram
simplifies the tree representation by merging nodes in the tree corresponding to the same encoder state. In
this section we will focus on the trellis representation of a convolutional code since it is the most common
characterization. The details of the trellis diagram representation are best described by an example.

Consider the convolutional encoder shown in Figure 8.7 with n = 3, k = 1, and K = 3. In this
encoder, one bit at a time is shifted into Stage 1 of the 3-stage shift register. At a given time t we denote
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the bit in Stage i of the shift register as Si. The 3 stages of the shift register are used to generate a
codeword of length 3, C1C2C3, where from the figure we see that C1 = S1 + S2, C2 = S1 + S2 + S3, and
C3 = S3. A bit sequence U shifted into the encoder generates a sequence of coded symbols, which we
denote by C. Note that the coded symbols corresponding to C3 are just the original information bits.
As with block codes, when one of the coded symbols in a convolutional code corresponds to the original
information bits, we say that the code is systematic. We define the encoder state as S = S2S3, i.e. the
contents of the last two stages of the encoder, and there are 22 = 4 possible values for this encoder state.
To characterize the encoder, we must show for each input bit and each possible encoder state what the
encoder output will be, and how the new input bit changes the encoder state for the next input bit.

+ +

Stage 2Stage 1 Stage 3

+

Encoder
 Output

S
1

S S
2 3

31
C C

2
C

Figure 8.7: Convolutional Encoder Example, (n = 3, k = 1, K = 3).

The trellis diagram for this code is shown in Figure 8.8. The solid lines in Figure 8.8 indicate the
encoder state transition when a 0 bit is input to Stage 1 of the encoder, and the dashed lines indicate
the state transition corresponding to a 1 bit input. For example, starting at state S = 00, if a 0 bit is
input to Stage 1 then, when the shift register transitions, the new state will remain as S = 00 (since the
0 in Stage 1 transitions to Stage 2, and the 0 in Stage 2 transitions to Stage 3, resulting in the new state
S = S2S3 = 00). On the other hand, if a 1 bit is input to Stage 1 then, when the shift register transitions,
the new state will become S = 10 (since the 1 in Stage 1 transitions to Stage 2, and the 0 in Stage 2
transitions to Stage 3, resulting in the new state S = S2S3 = 10). The encoder output corresponding
to a particular encoder state S and input S1 is written next to the transition lines in Figure 8.8. This
output is the encoder output that results from the encoder addition operations on the bits S1, S2 and
S3 in each stage of the encoder. For example, if S = 00 and S1 = 1 then the encoder output C1C2C3

has C1 = S1 + S2 = 1, C2 = S1 + S2 + S3 = 1, and C3 = S3 = 0. This output 110 is drawn next to the
dashed line transitioning from state S = 00 to state S = 10 in Figure 8.8. Note that the encoder output
for S1 = 0 and S = 00 is always the all-zero codeword regardless of the addition operations that form the
codeword C1C2C3, since summing together any number of 0s always yields 0. The portion of the trellis
between time ti and ti+1 is called the ith branch of the trellis. Figure 8.8 indicates that the initial state
at time t0 is the all-zero state. The trellis achieves steady state, defined as the point where all states
can be entered from either of two preceding states, at time t3. After this steady state is reached, the
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trellis repeats itself in each time interval. Note also that in steady state each state transitions to one of
two possible new states. In general trellis structures starting from the all-zero state at time t0 achieve
steady-state at time tK .

S=S S2 3

t 0
t 1

t 2 t 3 t 4000 000 000 000

S =0
1

1
S =1

011 011
111 111 111 111

010 010 010

001001

101 101 101

110 110

100 100

3 t
000

011

111

010

001

101

110

100

5
00

01

10

11

Figure 8.8: Trellis Diagram

For general values of k and K, the trellis diagram will have 2K−1 states, where each state has 2k

paths entering each node, and 2k paths leaving each node. Thus, the number of paths through the trellis
grows exponentially with k, K, and the length of the trellis path.

Example 8.9: Consider the convolution code represented by the trellis in Figure 8.8. For an initial state
S = S2S3 = 01, find the state sequence S and the encoder output C for input bit sequence U = 011.

Solution: The first occurence of S = 01 in the trellis is at time t2. We see at t2 that if the information bit
S1 = 0 we follow the solid line in the trellis from S = 01 at t2 to S = 00 at t3, and the output corresponding
to this path through the trellis is C = 011. Now at t3, starting at S = 00, for the information bit S1 = 1 we
follow the dashed line in the trellis to S = 10 at t4, and the output corresponding to this path through the
trellis is C = 111. Finally, at t4, starting at S = 10, for the information bit S1 = 1 we follow the dashed
line in the trellis to S = 11 at t5, and the output corresponding to this path through the trellis is C = 101.

8.3.2 Maximum Likelihood Decoding

The convolutional code generated by the finite state shift register is basically a finite state machine. Thus,
unlike an (n, k) block code, where maximum likelihood detection entails finding the length-n codeword
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that is closest to the received length-n codeword, maximum likelihood detection of a convolutional code
entails finding the most likely sequence of coded symbols C given the received sequence of coded symbols,
which we denote by R. In particular, for a received sequence R, the decoder decides that coded symbol
sequence C∗ was transmitted if

p(R|C∗) ≥ p(R|C)∀C. (8.54)

Since each possible sequence C corresponds to one path through the trellis diagram of the code, maximum
likelihood decoding corresponds to finding the maximum likelihood path through the trellis diagram. For
an AWGN channel, noise affects each coded symbol independently. Thus, for a convolutional code of rate
1/n, we can express the likelihood (8.54) as

p(R|C) =
∞∏
i=0

p(Ri|Ci) =
∞∏
i=0

n∏
j=1

p(Rij |Cij), (8.55)

where Ci is the portion of the code sequence C corresponding to the ith branch of the trellis, Ri is the
portion of the received code sequence R corresponding to the ith branch of the trellis, Cij is the jth
coded symbol corresponding to Ci and Rij is the jth received coded symbol corresponding to Ri. The
log likelihood function is defined as the log of p(R|C), given as

log p(R|C) =
∞∑
i=0

log p(Ri|Ci) =
∞∑
i=0

n∑
j=1

log p(Rij |Cij). (8.56)

The expression

Bi =
n∑
j=1

log p(Rij |Cij) (8.57)

is called the branch metric since it indicates the component of (8.56) associated with the ith branch of
the trellis. The sequence or path that maximizes the likelihood function also maximizes the log likelihood
function since the log is monotonically increasing. However, it is computationally more convenient for the
decoder to use the log likelihood function since it involves a summation rather than a product. The log
likelihood function associated with a given path through the trellis is also called the path metric which,
from (8.56), is equal to the sum of branch metrics along each branch of the path. The path through the
trellis with the maximum path metric corresponds to the maximum likelihood path.

The decoder can use either hard decision or soft decision for the expressions log p(Rij |Cij) in the log
likelihood metric. For hard decision decoding, the Rij is decoded as a 1 or a 0. The probability of hard
decision decoding error depends on the modulation and is denoted as p. If R and C are L bits long and
differ in d places (i.e. their Hamming distance is d), then

p(R|C) = pd(1 − p)L−d

and
log p(R|C) = −d log

1 − p

p
+ L log(1 − p). (8.58)

Since p < .5, (8.58) is minimized when d is minimized. So the coded sequence C with minimum Hamming
distance to the received sequence R corresponds to the maximum likelihood sequence.

In soft decision decoding the value of the received coded symbols (Rij) are used directly in the
decoder, rather than quantizing them to 1 or 0. For example, if the Cij are sent via BPSK over an
AWGN channel then

Rij =
√
Ec(2Cij − 1) + nij , (8.59)
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where Ec = kEb/n is the energy per coded symbol and nij denotes Gaussian noise of mean zero and
variance σ2 = .5N0. Thus,

p(Rij |Cij) =
1√
2πσ

exp

{
−
(
Rij −

√
Ec(2Cij − 1)

)2
2σ2

}
. (8.60)

Maximizing this likelihood function is equivalent to choosing the Cij that is closest in Euclidean distance
to Rij . In determining which sequence C maximizes the log likelihood function (8.56), any terms that
are common to two different sequences C1 and C2 can be neglected, since they contribute the same
amount to the summation. Similarly, we can scale all terms in (8.56) without changing the maximizing
sequence. Thus, by neglecting scaling factors and terms in (8.60) that are common to any Cij , we can
replace

∑n
j=1 log p(Rij |Cij) in (8.56) with the equivalent branch metric

µi =
n∑
j=1

Rij(2Cij − 1) (8.61)

and obtain the same maximum likelihood output.
We now illustrate the path metric computation under both hard and soft decisions for the convo-

lutional code of Figure 8.7 with the trellis diagram in Figure 8.8. For simplicity, we will only consider
two possible paths through the trellis, and compute their corresponding likelihoods for a given received
sequence R. Assume we start at time t0 in the all-zero state. The first path we consider is the all-zero
path, corresponding to the all-zero input sequence. The second path we consider starts in state S = 00
at time t0 and transitions to state S = 10 at time t1, then to state S = 01 at time t2, and finally to state
S = 00 at time t3, at which point this path merges with the all-zero path. Since the paths and therefore
their branch metrics at times t < t0 and t ≥ t3 are the same, the maximum likelihood path corresponds
to the path whose sum of branch metrics over the branches in which the two paths differ is smaller. From
Figure 8.8 we see that the all-zero path through the trellis generates the coded sequence C0 = 000000000
over the first three branches in the trellis. The second path generates the coded sequence C1 = 110110011
over the first three branches in the trellis.

Let us first consider hard decision decoding with error probability p. Suppose the received sequence
over these three branches is R = 100110111. Note that the Hamming distance between R and C0 is 6
while the Hamming distance between R and C1 is 2. As discussed above, the most likely path therefore
corresponds to C1 since it has minimum Hamming distance to R. The path metric for the all-zero path
is

M0 =
2∑
i=0

3∑
j=1

logP (Rij|Cij) = 6 log p+ 3 log(1 − p), (8.62)

while the path metric for the other path is

M1 =
2∑
i=0

3∑
j=1

logP (Rij|Cij) = 2 log p+ 7 log(1 − p). (8.63)

Assuming p << 1, which is generally the case, this yields M0 ≈ 3 and M1 ≈ 7. This confirms that the
second path has a larger path metric than the first.

Let us now consider soft decision decoding over time t0 to t3. Suppose the received sequence (before
demodulation) over these three branches, for Ec = 1, is Z = (.8,−.35,−.15, 1.35, 1.22,−.62, .87, 1.08, .91).
The path metric for the all zero path is

M0 =
2∑
i=0

µi =
2∑
i=0

3∑
j=1

Rij(2Cij − 1) =
2∑
i=0

3∑
j=1

−Rij = −5.11.
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The path metric for the second path is

M1 =
2∑
i=0

3∑
j=1

Rij(2Cij − 1) = 6.65.

Thus, the second path has a higher path metric than the first. In order to determine if the second path
is the maximum-likelihood path, we must compare its path metric to that of all other paths through the
trellis.

The difficulty with maximum likelihood decoding is that the complexity of computing the log likeli-
hood function (8.56) grows exponentially with the length i of the coded sequence, and this computation
must be done for every possible path through the trellis. The Viterbi algorithm, discussed in the next
section, reduces the complexity of maximum likelihood decoding by taking advantage of the structure of
the path metric computation.

8.3.3 The Viterbi Algorithm

The Viterbi algorithm, discovered by Viterbi in 1967 [6] reduces the complexity of maximum likelihood
decoding by systematically removing paths from consideration that cannot achieve the highest path
metric. The basic premise is to look at the partial path metrics associated with all paths entering a given
node (Node N) in the trellis. Since the possible paths through the trellis leaving node N are the same
for each entering path, the complete trellis path with the highest path metric that goes through Node N
must coincide with the path that has the highest partial path metric up to node N . This is illustrated
in Figure 8.9, where Path 1, Path 2, and Path 3 enter Node N (at trellis depth n) with partial path
metrics P l =

∑N
i=0B

l
i, l = 1, 2, 3 up to this node. Assume P 1 is the largest of these partial path metrics.

The complete path with the highest metric, shown in bold, has branch metrics {Bk} after node N . The
maximum likelihood path starting from Node N , i.e. the path starting from node N with the largest
path metric, has partial path metric

∑∞
k=nBk. The complete path metric for Path l, l = 1, 2, or 3 up to

node N and the maximum likelihood path after node N is P l +
∑∞
k=nBk, l = 1, 2, 3, and thus the path

with the maximum partial path metric P l up to node N (Path 1 in this example) must correspond to
the path with the largest path metric that goes through node N .

The Viterbi algorithm takes advantage of this structure by discarding all paths entering a given node
except the path with the largest partial path metric up to that node. The path that is not discarded
is called the survivor path. Thus, for the example of Figure 8.9, Path 1 is the survivor at node N
and Paths 2 and 3 are discarded from further consideration. Thus, at every stage in the trellis there
are 2K−1 surviving paths, one for each possible encoder state. A branch for a given stage of the trellis
cannot be decoded until all surviving paths at a subsequent trellis stage overlap with that branch, as
shown in Figure 8.10. This figure shows the surviving paths at time tk+3. We see in this figure that all
of these surviving paths can be traced back to a common stem from time tk to tk+1. At this point
the decoder can output the codeword Ci associated with this branch of the trellis. Note that there is
not a fixed decoding delay associated with how far back in the trellis a common stem occurs for a given
set of surviving paths, this delay depends on k, K, and the specific code properties. To avoid a random
decoding delay, the Viterbi algorithm is typically modified such that at a given stage in the trellis, the
most likely branch n stages back is decided upon based on the partial path metrics up to that point. While
this modification does not yield exact maximum likelihood decoding, for n sufficiently large (typically
n ≥ 5K) it is a good approximation.

The Viterbi algorithm must keep track of 2k(K−1) surviving paths and their corresponding metrics. At
each stage, 2k metrics must be computed for each node to determine the surviving path, corresponding
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Figure 8.9: Partial Path Metrics on Maximum Likelihood Path

to the 2k paths entering each node. Thus, the number of computations in decoding and the memory
requirements for the algorithm increase exponentially with k and K. This implies that for practical
implementations convolutional codes are restricted to relatively small values of k and K.

8.3.4 Distance Properties

As with block codes, the error correction capability of convolutional codes depends on the distance
between codeword sequences. Since convolutional codes are linear, the minimum distance between all
codeword sequences can be found by determining the minimum distance from any sequence or equivalently
any trellis path to the all-zero sequence/trellis path. Clearly the trellis path with minimum distance to
the all-zero path will diverge and remerge with the all-zero path, such that the two paths coincide except
over some number of trellis branches. To find this minimum distance path we must consider all paths
that diverge from the all-zero state and then remerge with this state. As an example, in Figure 8.11 we
draw all paths in Figure 8.8 between times t0 and t5 that diverge and remerge with the all-zero state.
Note that Path 2 is identical to Path 1, just shifted in time, and therefore is not considered as a separate
path. Note also that we could look over a longer time interval, but any paths that diverge and remerge
over this longer interval would traverse the same branches (shifted in time) as one of these paths plus
some additional branches, and would therefore have larger path metrics. In particular, we see that Path
4 traverses the same branches as Path 1, 00-10-01 and then later 01-00, plus the branches 01-10-01.
Thus we need not consider a longer time interval to find the minimum distance path. For each path in
Figure 8.8 we label the Hamming distance of the codeword on each branch to the all-zero codeword in
the corresponding branch of the all-zero path. By summing up the Hamming distances on all branches of
each path we see that Path 1 has a Hamming distance of 6 and Paths 3 and 4 have Hamming distances
of 8. Recalling that dashed lines indicate 1 bit inputs while solid lines indicate 0 bit inputs, we see that
Path 1 corresponds to an input bit sequence from t0 to t5 of 10000, Path 3 corresponds to an input bit
sequence of 11000, and Path 4 corresponds to an input bit sequence of 10100. Thus, Path 1 results in
one bit error, relative to the all zero squence, and Paths 3 and 4 result in two bit errors.

We define the minimum free distance dfree of a convolutional code, also called the free distance,
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Figure 8.10: Common Stem for All Survivor Paths in the Trellis

to be the minimum Hamming distance of all paths through the trellis to the all-zero path, which for this
example is 6. The error correction capability of the code is obtained in the same manner as for block
codes, with dmin replaced by df , so that the code can correct t channels errors with

t = bdf − 1
2

c.

8.3.5 State Diagrams and Transfer Functions

The transfer function of a convolutional code is used to characterize paths that diverge and remerge
from the all-zero path, and is also used to obtain probability of error bounds. The transfer function is
obtained from the code’s state diagram representing possible transitions from the all-zero state to the
all-zero state. The state diagram for the code illustrated in Figure 8.8 is shown in Figure 8.12, with the
all-zero state a = 00 split into a second node e to facilitate representing paths that begin and end in this
state. Transitions between states due to a 0 input bit are represented by solid lines, while transitions
due to a 1 input bit are represented by dashed lines. The branches of the state diagram are labeled as
either D0 = 1, D1, or D2, where the exponent of D corresponds to the Hamming distance between the
codeword, which is shown for each branch transition, and the all-zero codeword in the all-zero path. The
self-loop in node a can be ignored since it does not contribute to the distance properties of the code.

The state diagram can be represented by state equations for each state. For the example of Figure 8.8
we obtain state equations corresponding to the four states:

Xc = D3Xa +DXbXb = DXc +DXdXd = D2Xc +DXdXe = D2Xb, (8.64)

where Xa, . . . , Xe are dummy variables characterizing the partial paths. The transfer function of the
code, describing the paths from state a to state e, is defined as T (D) = Xe/Xa. By solving the state
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Figure 8.11: Path Distances to the All-Zero Path

equations for the code, which can be done using standard techniques such as Mason’s formula, we obtain
a transfer function of the form

T (D) =
∞∑

d=df

adD
d, (8.65)

where ad is the number of paths with Hamming distance d from the all-zero path. As stated above, the
minimum Hamming distance to the all-zero path is df , and the transfer function T (D) indicates that
there are adf

paths with this minimum distance. For the example of Figure 8.8, we can solve the state
equations given in 8.64 to get the transfer function

T (D) =
D6

1 − 2D2
= D6 + 2D8 + 4D10 + . . . (8.66)

We see from the transfer function that there is one path with minimum distance df = 6, and 2 paths
with Hamming distance 8, which is consistent with Figure 8.11. The transfer function is a convenient
shorthand for enumerating the number and corresponding Hamming distance of all paths in a particular
code that diverge and later remerge with the all-zero path.

While the transfer function is sufficient to capture the number and Hamming distance of paths in the
trellis to the all-zero path, we need a more detailed characterization to compute the bit error probability
of the convolutional code. We therefore introduce two additional parameters into the transfer function, N
and J for this additional characterization. The factor N is introduced on all branch transitions associated
with a 1 input bit (dashed lines in Figure 8.12). The factor J is introduced to every branch in the state
diagram such that the exponent of J in the transfer function equals the number of branches in any given
path from node a to node e. The extended state diagram corresponding to the trellis of Figure 8.8 is
shown in Figure 8.13.

The extended state diagram is also represented by state equations. For the example of Figure 8.13
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Figure 8.12: State Diagram

these are given by:

Xc = JND3Xa + JNDXbXb = JDXc + JDXdXd = JND2Xc + JND2XdXe = JD2Xb, (8.67)

Similar to the previous transfer function definition, the transfer function associated with this extended
state is defined as T (D,N, J) = Xe/Xa, which for this example yields

T (D,N, J) =
J3ND6

1 − JND2(1 + J)
= J3ND6 + J4N2D8 + J5N2D8 + J5N3D10 + . . . . (8.68)

The factor J is most important when we are interested in transmitting finite length sequences: for infinite
length sequences we typically set J = 1 to obtain the transfer function for the extended state

T (D,N) = T (D,N, J = 1). (8.69)

The transfer function for the extended state tells us more information about the diverging and
remerging paths; namely, the minimum distance path with Hamming distance 6 is of length 3 and results
in a single bit error (exponent of N is one), one path of Hamming distance 8 is of length 4 and results in 2
bit errors, and the other path of Hamming distance 8 is of length 5 and results in 2 bit errors, consistent
with Figure 8.11. The extended transfer function is a convenient shorthand to represent the Hamming
distance, length, and number of bit errors corresponding to each diverging and remerging path of a code
from the all zero path. We will see in the next section that this convenient representation is very useful
in characterizing the probability of error for convolutional codes.

8.3.6 Error Probability for Convolutional Codes

Since convolutional codes are linear codes, the probability of error can be obtained by assuming that the
all-zero sequence is transmitted, and determining the probability that the decoder decides in favor of a
different sequence. We will consider error probability for both hard decision and soft decision decoding.

We first consider soft-decision decoding. We are interested in the probability that the all-zero se-
quence is sent, but a different sequence is decoded. If the coded symbols output from the convolutional
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Figure 8.13: Extended State Diagram

encoder are sent over an AWGN channel using coherent BPSK modulation with energy Ec = RcEb, then
it can be shown that if the all-zero sequence is transmitted, the probability of mistaking this sequence
with a sequence Hamming distance d away is [2]

P2(d) = Q

(√
2Ec
N0

d

)
= Q

(√
2γbRcd

)
. (8.70)

We call this probability the pairwise error probability, since it is the error probability associated with
a pairwise comparison of two paths that differ in d bits. The transfer function enumerates all paths that
diverge and remerge with the all zero path, so by the union bound we can upper bound the probability
of mistaking the all-zero path for another path through the trellis as

Pe ≤
∞∑
df

adQ
(√

2γbRcd
)
, (8.71)

where ad denotes the number of paths of distance d from the all-zero path. This bound can be expressed
in terms of the transfer function itself if we use an exponential to upper bound the Q function, i.e. we
use the fact that

Q
(√

2γbRcd
)
≤ e−γbRcd.

We then get the upper bound
Pe < T (D)|D=e−γbRc . (8.72)

While this upper bound tells us the probability of mistaking one sequence for another, it does not
yield the probability of bit error, which is more fundamental. We know that the exponent in the factor
N of T (D,N) indicates the number of information bit errors associated with selecting an incorrect path
through the trellis. Specifically, we can express T (D,N) as

T (D,N) =
∞∑

d=dfree

adD
dNf(d), (8.73)
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where f(d) denotes the number of bit errors associated with a path of distance d from the all-zero path.
Then we can upper bound the bit error probability, for k = 1, as [2]

Pb ≤
∞∑
df

adf(d)Q
(√

2γbRcd
)
, (8.74)

where the only difference with (8.71) is the weighting factor f(d) corresponding to the number of bit
errors in each incorrect path. If the Q function is upper bounded by the complex exponential as above
we get the upper bound

Pb <
dT (D,N)

dN

∣∣∣∣
N=1,D=e−γbRc

. (8.75)

If k > 1 then we divide (8.74) or (8.75) by k to obtain Pb.
All of these bounds assume coherent BPSK transmission (or coherent QPSK, which is equivalent to

two independent BPSK transmissions). For other modulations, the pairwise error probability P2(d) must
be recomputed based on the probability of error associated with the given modulation.

Let us now consider hard decision decoding. The probability of selecting an incorrect path at distance
d from the all zero path, for d odd, is given by

P2(d) =
d∑

k=.5(d+1)

(
d
k

)
pk(1 − p)(d−k), (8.76)

where p is the probability or error on the channel. This is because the incorrect path will be selected
only if the decoded path is closer to the incorrect path than to the all-zero path, i.e. the decoder makes
at least .5(d + 1) errors. If d is even, then the incorrect path is selected when the decoder makes more
than .5d errors, and the decoder makes a choice at random of the number of errors is exactly .5d. We
can simplify the pairwise error probability using the Chernoff bound to yield

P2(d) < [4p(1 − p)]d/2. (8.77)

Following the same approach as in soft decision decoding, we then obtain the error probability bound as

Pe <
∞∑
df

ad[4p(1 − p)]d/2 < T (D)|
D=

√
4p(1−p), (8.78)

and

Pb <
∞∑
df

adf(d)P2(d) =
dT (D,N)

dN

∣∣∣∣
N=1,D=

√
4p(1−p)

. (8.79)

8.3.7 Convolutional Coding and Interleaving for Fading Channels

As with block codes, convolutional codes suffer performance degradation in fading channels, since the
code is not designed to correct for bursts of errors. Thus, it is common to use an interleaver to spread
out error bursts. In block coding the interleaver spreads errors across different codewords. Since there
is no similar notion of a codeword in convolutional codes, a slightly different interleaver design is needed
to mitigate the effect of burst errors. The interleaver commonly used with convolutional codes, called
a convolutional interleaver, is designed to both spread out burst errors and to work well with the
incremental nature of convolutional code generation [7, 8].
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An example block diagram for a convolutional interleaver is shown in Figure 8.14. The encoder output
is multiplexed into buffers of increasing size, from no buffering to a buffer of size N − 1. The channel
input is similarly multiplexed from these buffers into the channel. The reverse operation is performed
at the decoder. Thus, the convolutional interleaver delays the transmission through the channel of the
encoder output by progressively larger amounts, and this delay schedule is reversed at the receiver. This
interleaver takes sequential outputs of the encoder and separates them by N − 1 other symbols in the
channel transmission, thereby breaking up burst errors in the channel. Note that a convolutional encoder
can also be used with a block code, but it is most commonly used with a convolutional code. The total
memory associated with the convolutional interleaver is .5N(N − 1) and the delay is N(N − 1)Ts [1],
where Ts is the symbol time for transmitting the coded symbols over the channel.

Encoder
Channel Decoder

1

1

N−11 2

N−11 2

Figure 8.14: Convolutional Coding and Interleaving

Example 8.10: Consider a channel with coherence time Tc = 12.5 msec and a coded bit rate of
Rs = 100, 000 Kilosymbols per second. Find the average delay of a convolutional interleaver that achieves
independent fading between subsequent coded bits.

Solution: For the convolutional interleaver, each subsequent coded bit is separated byNTs, and we require
NTs ≥ Tc for independent fading, where Ts = 1/Rs. Thus we have N ≥ Tc/Ts = .0125/.00001 = 1250.
Note that this is the same as the required depth for a block interleaver to get independent fading on each
coded bit. The total delay is N(N − 1)Ts = 15 s. This is a very high delay for either voice or data.

8.4 Concatenated Codes

A concatenated code uses two levels of coding: an inner code and an outer code, as show in Figure 8.15.
The inner code is typically designed to remove most of the errors introduced by the channel, and the
outer code is typically a less powerful code that further reduces error probability when the received
coded bits have a relatively low probability of error (since most errors are correctly by the inner code).
Concatenated codes may have the inner and outer codes separated by an interleaver to break up block
errors introduced by the channel. Concatenated codes typically achieve very low error probability with
less complexity than a single code with the same error probability performance. A common concatenated
code used in CD recordings has a convolutional inner code and a Reed Soloman (block) outer code [4].
The decoding of concatenated codes is typically done in two stages, as indicated in the figure: first the
inner code is decoded, and then the outer code is decoded separately. This is a suboptimal technique,
since in fact both codes are working in tandem to reduce error probability. However, the ML decoder
for a concatenated code, which performs joint decoding, is highly complex. It was discovered in the mid
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1990s that a near-optimal decoder for concatanated codes can be obtained based on iterative decoding,
and that is the basic premise behind turbo codes, described in the next section.

Interleaver

Channel

  Inner 
Decoder

  Outer 
Decoder

  Outer 
Encoder

  Inner
Encoder

Deinterleaver

Figure 8.15: Concatenated Coding

8.5 Turbo Codes

Turbo codes, introduced in 1993 in a landmark paper by Berrou, Glavieux, and Thitimajshima [9], are
very powerful codes that can come within a fraction of a dB of the Shannon capacity limit on AWGN
channels. Turbo codes and the more general family of codes on graphs with iterative decoding algorithms
[11, 12] have been studied extensively, yet some of their characteristics are still not well understood. The
main ideas behind codes on graphs were introduced by Gallager in the early sixties [10], however at the
time these coding techniques were thought impractical and were generally not pursued by researchers in
the field. The landmark 1993 paper on turbo codes [9] provided more than enough motivation to revisit
Gallager’s and other’s work on iterative, graph-based decoding techniques.

As first described by Berrou et al, turbo codes consist of two key components: parallel concatenated
encoding and iterative, “turbo” decoding [9, 13]. A typical parallel concatenated encoder is shown in
Figure 8.16. It consists of two parallel convolutional encoders separated by an interleaver, with the input
to the channel being the data bits m along with the parity bits X1 and X2 output from each of the
encoders in response to input m. Since the m information bits are transmitted as part of the codeword,
we call this a systematic turbo code. The key to parallel concatenated encoding lies in the recursive
nature of the encoders and the impact of the interleaver on the information stream. Interleavers also play
a significant role in the elimination of error floors [13].

Iterative, or “turbo” decoding exploits the component-code substructure of the turbo encoder by
associating a component decoder with each of the component encoders. More specifically, each decoder
performs soft input/soft output decoding, as shown in Figure 8.17 for the example encoder of Figure 8.16.
In this figure Decoder 1 generates a soft decision in the form of a probability measure p(m1) on the
transmitted information bits based on the received codeword (m,X1). This reliability information is
passed to Decoder 2, which generates its own probability measure p(m2) from its received codeword
(m,X2) and the probability measure p(m1). This reliability information is input to Decoder 1, which
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Figure 8.16: Parallel Concatenated (Turbo) Encoder.

revises its measure p(m1) based on this information and the original received codeword. Decoder 1 sends
the new reliability information to Decoder 2, which revises its measure using this new information. Turbo
decoding proceeds in an iterative manner, with the two component decoders alternately updating their
probability measures. Ideally the decoders eventually agree on probability measures that reduce to hard
decisions m = m1 = m2. However, the stopping condition for turbo decoding is not well-defined, in part
because there are many cases in which the turbo decoding algorithm does not converge; i.e., the decoders
cannot agree on the value of m. Several methods have been proposed for detecting convergence (if it
occurs), including bit estimate variance [Berr96] and neural net-based techniques [14].

Interleaver Deinterleaver

(m, X  )1

(m, X  )2 m2

m1

p(m  )2

p(m  )1

Decoder 1

Decoder 2

Figure 8.17: Turbo Decoder.

The simulated performance of turbo codes over multiple iterations of of the decoder is shown in
Figure 8.18 for a code composed of two rate 1/2 convolutional codes with constraint length K = 5
separated by an interleaver of depth d = 216 = 65, 536. The decoder converges after approximately 18
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iterations. This curve indicates several important aspects of turbo codes. First, note their exception
performance: bit error probability of 10−6 at an Eb/N0 of less than 1 dB. In fact, the original turbo
code proposed in [9] performed within .5 dB of the Shannon capacity limit at Pb = 10−5. The intuitive
explanation for the amazing performance of turbo codes is that the code complexity introduced by the
encoding structure is similar to the codes that achieve Shannon capacity. The iterative procedure of the
turbo decoder allows these codes to be decoded without excessive complexity. However, note that the
turbo code exhibits an error floor: in Figure 8.18 this floor occurs at 10−6. This floor is problematic for
systems that require extremely low bit error rates. Several mechanisms have been investigated to lower
the error floor, including bit interleaving and increasing the constraint length of the component codes.
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Figure 8.18: Turbo Code Performance (Rate 1/2, K = 5 component codes with interleaver depth 216).

An alternative to parallel concatenated coding is serial concatenated coding [15]. In this coding
technique, one component code serves as an outer code, and the output of this first encoder is interleaved
and passed to a second encoder. The output of the second encoder comprises the coded bits. Iterative
decoding between the inner and outer codes is used for decoding. There has been much work comparing
serial and parallel concatenated code performance, e.g. [15, 17, 16]. While both codes perform very well
under similar delay and complexity conditions, serial concatenated coding in some cases performs better
at low bit error rates and also can exhibit a lower error floor.

8.6 Low Density Parity Check Codes

Low density parity check (LDPC) codes were originally invented by Gallager in his 1961 Masters thesis
[10]. However, these codes were largely ignored until the introduction of turbo codes, which rekindled
some of same ideas. Subsequent to the landmark paper on turbo codes in 1993 [9], LDPC codes were
reinvented by Mackay and Neil [18] and by Wiberg [19] in 1996. Shortly thereafter it was recognized
that these new code designs were actually reinventions of Gallager’s original work, and subsequently
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much work has been devoted to finding the capacity limits, encoder and decoder designs, and practical
implementation of LDPC codes for different channels.

LDPC codes are linear block codes with a particular structure for the parity check matrix H, which
was defined in Section 8.2.3. Specifically, a (dv, dc) regular binary LDPC has a parity check matrix H
with dv ones in each column and dc ones in each row, where dv and dc are chosen as part of the codeword
design and are small relative to the codeword length. Since the fraction of nonzero entries in H is small,
the parity check matrix for the code has a low density, and hence the name low density parity check
codes.

Provided that the codeword length is long, LDPC codes achieve performance close to the Shannon
limit, in some cases surpassing the performance of parallel or serially concatenated codes [24]. The
fundamental practical difference between turbo codes and LDPC codes is that turbo codes tend to have
low encoding complexity (linear in blocklength) but high decoding complexity (due to their iterative
nature and message passing). In contrast, LDPC codes tend to have relatively high encoding complexity
(quadratic in blocklength) but low decoding complexity. In particular, like turbo codes, LDPC decoding
uses iterative techniques, which are related to Pearl’s belief propagation commonly used by the artificial
intelligence community [25]. However, the belief propagation corresponding to LDPC decoding is simpler
than for turbo decoding, thereby making the LDPC iterative decoder much simpler [25, 26]. In addition,
the belief propagation decoding is parallelizable and can be closely approximated with very low complexity
decoders [20]. Finally, the decoding algorithm for LDPC codes can detect when a correct codeword has
been detected, which is not necessarily the case for turbo codes.

Additional work in the area of LDPC codes includes finding capacity limits for these codes [20],
determining effective code designs [29] and efficient encoding and decoding algorithms [20, 28], and
expanding the code designs to include nonregular [24] and nonbinary LDPC codes [21] as well as coded
modulation [22].

8.7 Coded Modulation

Although Shannon proved the capacity theorem for AWGN channels in the late 1940s, it wasn’t until
the 1990s that rates approaching the Shannon limit were attained, primarily for AWGN channels with
binary modulation using turbo codes. Shannon’s theorem predicted the possibility of reducing both
energy and bandwidth simultaneously through coding. However, as described in Section 8.1, traditional
error-correction coding schemes, such as block convolutional, and turbo codes, reduce transmit power at
the expense of increased bandwidth or reduced data rate.

The spectrally-efficient coding breakthrough came when Ungerboeck [30] introduced a coded-modulation
technique to jointly optimize both channel coding and modulation. This joint optimization results in sig-
nificant coding gains without bandwidth expansion. Ungerboeck’s trellis-coded modulation, which uses
multilevel/phase signal modulation and simple convolutional coding with mapping by set partitioning,
has remained superior over more recent developments in coded modulation (coset and lattice codes), as
well as more complex trellis codes [31]. We now outline the general principles of this coding technique.
Comprehensive treatments of trellis, lattice, and coset codes can be found in [30, 32, 31].

8.7.1 Coded Modulation for AWGN Channels

The basic scheme for trellis and lattice coding, or more generally, any type of coset coding, is depicted
in Figure 8.19. There are five elements required to generate the coded-modulation:
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Figure 8.19: General Coding Scheme.

1. A binary encoder E, block or convolutional, that operates on k uncoded data bits to produce k+ r
coded bits.

2. A subset selector, which uses the coded bits to choose one of 2k+r subsets from a partition of the
N -dimensional signal constellation.

3. A point selector, which uses n− k additional uncoded bits to choose one of the 2n−k signal points
in the selected subset.

4. A constellation map, which maps the selected point from N -dimensional space to a sequence of N/2
points in two-dimensional space.

5. An MQAM modulator (or other M -ary modulator).

The first two steps described above are the channel coding, and the remaining steps are the modulation.
The receiver essentially reverses the modulation and coding steps: after MQAM demodulation and an
inverse 2/N constellation mapping, decoding is done in essentially two stages: first, the points within
each subset that are closest to the received signal point are determined; then, the maximum-likelihood
subset sequence is calculated. When the encoder E is a convolutional encoder, this coded-modulation
scheme is referred to as a trellis code; for E a block encoder, it is called a lattice (or block) code.

The steps described above essentially decouple the channel coding gain from gain associated with
signal-shaping in the modulation. Specifically, the code distance properties, and thus the channel coding
gain, are determined by the encoder (E) properties and the subset partitioning, which are essentially
decoupled from signal shaping. We will discuss the channel coding gain in more detail below. Optimal
shaping of the signal constellation provides up to an additional 1.53 dB of shape gain (for asymptotically
large N), independent of the channel coding scheme1. However, the performance improvement from shape
gain is offset by the corresponding complexity of the constellation map, which grows exponentially with
N . The size of the transmit constellation is determined by the average power constraint, and doesn’t
affect the shape or coding gain.

The channel coding gain results from a selection of all possible sequences of signal points. If we
consider a sequence of N input bits as a point in N -dimensional space (the sequence space), then this

1A square constellation has 0 dB of shape gain; a circular constellation, which is the geometrical figure with the least
average energy for a given area, achieves the maximum shape gain for a given N [31].
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selection is used to guarantee some minimum distance dmin in the sequence space between possible input
sequences. Errors generally occur when a sequence is mistaken for its closest neighbor, and in AWGN
channels this error probability is a decreasing function of d2

min. We can thus decrease the BER by increas-
ing the separation between each point in the sequence space by a fixed amount (“stretching” the space).
However, this will result in a proportional power increase, so no net coding gain is realized. The effective
power gain of the channel code is, therefore, the minimum squared distance between allowable sequence
points (the sequence points obtained through coding), multiplied by the density of the allowable sequence
points. Specifically, if the minimum distance and density of points in the sequence space are denoted
by d0 and ∆0, respectively, and if the minimum distance and density of points in the sequence space
obtained through coding are denoted by dmin and ∆, respectively, then maximum-likelihood sequence
detection yields a channel coding gain of

Gc =

(
d2
min

d2
0

)(
∆
∆0

)
. (8.80)

The second bracketed term in this expression is also refered to as the constellation expansion factor,
and equals 2−r (per N dimensions) for a redundancy of r bits in the encoder E [31].

Some of the nominal coding gain in (8.80) is lost due to correct sequences having more than one
nearest neighbor in the sequence space, which increases the possibility of incorrect sequence detection.
This loss in coding gain is characterized by the error coefficient, which is tabulated for most common
lattice and trellis codes in [31]. In general, the error coefficient is larger for lattice codes than for trellis
codes with comparable values of Gc.

Channel coding is done using set partitioning of lattices. A lattice is a discrete set of vectors in real
Euclidean N -space that forms a group under ordinary vector addition, so the sum or difference of any two
vectors in the lattice is also in the lattice. A sub-lattice is a subset of a lattice that is itself a lattice. The
sequence space for uncoded M-QAM modulation is just the N -cube2, so the minimum distance between
points is no different than in the two-dimensional case. By restricting input sequences to lie on a lattice
in N -space that is denser than the N -cube, we can increase dmin while maintaining the same density (or
equivalently, the same average power) in the transmit signal constellation; hence, there is no constellation
expansion. The N -cube is a lattice, however for every N > 1 there are denser lattices in N -dimensional
space. Finding the densest lattice in N dimensions is a well-known mathematical problem, and has been
solved for all N for which the decoder complexity is manageable3. Once the densest lattice is known, we
can form partioning subsets, or cosets, of the lattice through translation of any sublattice. The choice
of the partitioning sublattice will determine the size of the partition, i.e. the number of subsets that the
subset selector in Figure 8.19 has to choose from. Data bits are then conveyed in two ways: through the
sequence of cosets from which constellation points are selected, and through the points selected within
each coset. The density of the lattice determines the distance between points within a coset, while the
distance between subset sequences is essentially determined by the binary code properties of the encoder
E, and its redundancy r. If we let dp denote the minimum distance between points within a coset,
and ds denote the minimum distance between the coset sequences, then the minimum distance code is
dmin = min(dp, ds). The effective coding gain is given by

Gc = 2−2r/Nd2
min, (8.81)

where 2−2r/N is the constellation expansion factor (in two dimensions) from the r extra bits introduced
by the binary channel encoder.

2The Cartesian product of two-dimensional rectangular lattices with points at odd integers.
3The complexity of the maximum-likelihood decoder implemented with the Viterbi algorithm is roughly proportional to

N .
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Returning to Figure 8.19, suppose that we want to send m = n + r bits per dimension, so an N
sequence conveys mN bits. If we use the densest lattice in N space that lies within an N sphere, where
the radius of the sphere is just large enough to enclose 2mN points, then we achieve a total coding gain
which combines the channel gain (resulting from the lattice density and the encoder properties) with the
shape gain of the N sphere over the N rectangle. Clearly, the channel coding gain is decoupled from the
shape gain. An increase in signal power would allow us to use a larger N sphere, and hence transmit more
uncoded bits. It is possible to generate maximum-density N -dimensional lattices for N = 4, 8, 16, and
24 using a simple partition of the two-dimensional rectangular lattice combined with either conventional
block or convolutional coding. Details of this type of code construction, and the corresponding decoding
algorithms, can be found in [32] for both lattice and trellis codes. For these constructions, an effective
coding gain of approximately 1.5, 3.0, 4.5, and 6.0 dB is obtained with lattice codes, for N = 4, 8, 16,
and 24, respectively. Trellis codes exhibit higher coding gains with comparable complexity.

We conclude this section with an example of coded-modulation: the N = 8, 3 dB gain lattice code
proposed in [32]. First, the two-dimensional signal constellation is partitioned into four subsets as shown
in Figure 8.20, where the subsets are represented by the points A0, A1, B0, and B1, respectively. From
this subset partition, we form an 8-dimensional lattice by taking all sequences of four points in which all
points are either A points or B points and moreover, within a four point sequence, the point subscripts
satisfy the parity check i1 + i2 + i3 + i4 = 0 (so the sequence subscripts must be codewords in the (4,3)
parity-check code, which has a minimum Hamming distance of two). Thus, three data bits and one
parity check bit are used to determine the lattice subset. The minimum distance resulting from this
subset partition is four times the minimum distance of the uncoded signal constellation, yielding a 6 dB
gain. However, the extra parity check bit expands the constellation by 1/2 bit per dimension, which from
Chapter 5.3.3 costs and additional factor of 4.5 = 2 or 3 dB. Thus, the net coding gain is 6 − 3 = 3 dB.
The remaining data bits are used to choose a point within the selected subset, so for a data rate of m
bits/symbol, the four lattice subsets must each have 2m−1 points4.
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Figure 8.20: Subset Partition for an Eight-Dimensional Lattice.

4This yields m − 1 bits/symbol, with the additional bit/symbol conveyed by the channel code.
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Coded modulation using turbo codes has also been investigated [33, 34, 35]. This work shows that
turbo trellis coded modulation can come very close to the Shannon limit for nonbinary signalling.

8.7.2 Coded Modulation with Interleaving for Fading Channels

Coded modulation for fading channels also uses the coding and interleaving approach of block and con-
volutional codes, however the interleaver is matched to the block or convolutional encoder in coded
modulation design [36, 37]. However, the minimum distance error event in a trellis code depends both on
the parallel transitions and the minimum distance error event through the trellis. Thus, the dominating
error event is not always obvious, which complicates code design. A good overview of trellis code design
for fading channels, including the impact of interleaving and channel fade information, can be found in
[36] and the references therein. There is no good rule of thumb for these code designs, and in many cases
simulations must be used to evaluate performance and choose between different code designs.

8.8 Unequal Error Protection Codes

When not all bits transmitted over the channel have the same priority or bit error probability requirement,
multiresolution or unequal error protection (UEP) codes can be used. This scenario arises, for example,
in voice and data systems where voice is typically more tolerant to bit errors than data: data packets
received in error must be retransmitted, so Pb < 10−6 is typically required, whereas good quality voice
requires only on the order of Pb < 10−3. This scenario also arises for certain types of compression. For
example, in image compression, bits corresponding to the low resolution reproduction of the image are
required, whereas high resolution bits simply refine the image. With multiresolution channel coding,
all bits are received correctly with a high probability under benign channel conditions. However, if the
channel is in a deep fade, only the high priority or bits requiring low Pb will be received correctly with
high probability.

Practical implementation of a multilevel code was first studied by Imai and Hirakawa [38]. Binary
UEP codes were later considered both for combined speech and channel coding [39], and combined image
and channel coding [40]. These implementations use traditional (block or convolutional) error-correction
codes, so coding gain is directly proportional to bandwidth expansion. Subsequently, two bandwidth-
efficient implementations for UEP have been proposed: time-multiplexing of bandwidth-efficient coded
modulation [41], and coded-modulation techniques applied to both uniform and nonuniform signal con-
stellations [42, 43]. All of these multilevel codes can be designed for either AWGN or fading channels. We
now briefly summarize these UEP techniques; specifically, we describe the principles behind multilevel
coding and multistate decoding, and the more complex bandwidth-efficient implementations.

A block diagram of a general multilevel encoder is shown in Figure 8.21. The source encoder first
divides the information sequence into M parallel bit streams of decreasing priority. The channel encoder
consists of M different binary error-correcting codes C1, . . . , CM with decreasing codeword distances.
The ith priority bit stream enters the ith encoder, which generates the coded bits si. If the 2M points in
the signal constellation are numbered from 0 to 2M − 1, then the point selector chooses the constellation
point s corresponding to

s =
M∑
i=1

si × 2i−1. (8.82)

For example, if M = 3 and the signal constellation is 8PSK, then the chosen signal point will have phase
2πs/8.
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Figure 8.21: Multilevel Encoder

Optimal decoding of the multilevel code uses a maximum-likelihood decoder, which determines the
input sequence that maximizes the received sequence probability. The maximum-likelihood decoder must
therefore jointly decode the code sequences s1, . . . , sm. This can entail significant complexity even if
the individual codes in the multilevel code have low complexity. For example, if the component codes
are convolutional codes with 2µi states, i = 1, . . . ,M , the number of states in the optimal decoder is
2µ1+...+µM . Due to the high complexity of optimal decoding, the suboptimal technique of multistage
decoding, introduced in [38], is used for most implementations. Multistage decoding is accomplished by
decoding the component codes sequentially. First, the most robust code, C1, is decoded, then C2, and so
forth. Once the code sequence corresponding to encoder Ci is estimated, it is assumed correct for code
decisions on the less robust code sequences.

The binary encoders of this multilevel code require extra code bits to achieve their coding gain,
thus they are not bandwidth-efficient. An alternative approach recently proposed in [42] uses time-
multiplexing of the trellis codes described in Chapter 8. In this approach, different conventional coded
modulation schemes, such as lattice or trellis codes, with different coding gains are used for each priority
class of input data. The transmit signal constellations corresponding to each encoder may differ in size
(number of signal points), but the average power of each constellation is the same. The signal points
output by each of the individual encoders are then time-multiplexed together for transmission over the
channel, as shown in Figure 8.22 for two different priority bit streams. Let Ri denote the bit rate of
encoder Ci in this figure, for i = 1, 2. If T1 equals the fraction of time that the high-priority C1 code is
transmitted, and T2 equals the fraction of time that the C2 code is transmitted, then the total bit rate
is (R1T1 + R2T2)/(T1 + T2), with the high-priority bits comprising R1T1/(R1T1 + R2T2) percent of this
total.

The time-multiplexed coding method yields a higher gain if the constellation maps S1 and S2 of
Figure 8.22 are designed jointly. This revised scheme is shown in Figure 8.23 for 2 encoders, where the
extension to M encoders is straightforward. Recall that in trellis coding, bits are encoded to select the
lattice subset, and uncoded bits choose the constellation point within the subset. The binary encoder
properties reduce the Pb for the encoded bits only; the Pb for the uncoded bits is determined by the
separation of the constellation signal points. We can easily modify this scheme to yield two levels of
coding gain, where the high-priority bits are heavily encoded and used to choose the subset of the
partitioned constellation, while the low-priority bits are uncoded or lightly coded and used to select the
constellation signal point.
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8.9 Joint Source and Channel Coding

The underlying premise of UEP codes is that the bit error probabilities of the channel code should be
matched to the priority or Pb requirements associated with the bits to be transmitted. These bits are
often taken from the output of a compression algorithm acting on the original data source. Hence, UEP
coding can be considered as a joint design between compression (also called source coding) and channel
coding. Although Shannon determined that the source and channel codes can be designed separately on
an AWGN channel with no loss in optimality [45], this result holds only in the limit of infinite source code
dimension, infinite channel code block length, and infinite complexity and delay. Thus, there has been
much work on investigating the benefits of joint source and channel coding under more realistic system
assumptions.

Previous work in the area of joint source and channel coding falls into several broad categories: source-
optimized channel coding, channel-optimized source coding, and iterative algorithms, which combine these
two code designs. In source-optimized channel coding, the source code is designed for a noiseless channel.
A channel code is then designed for this source code to minimize end-to-end distortion over the given
channel based on the distortion associated with corruption of the different transmitted bits. UEP channel
coding where the Pb of the different component channel codes is matched to the bit priorities associated
with the source code is an example of this technique. Source-optimized channel coding has been applied
to image compression with convolution channel coding and with rate-compatible punctured convolutional
(RCPC) channel codes in [40, 46, 47]. A comprehensive treatment of matching RCPC channel codes or
multilevel quadrature amplitude modulation (MQAM) to subband and linear predictive speech coding
in both AWGN and Rayleigh fading channels, can be found in [48]. In source-optimized modulation, the
source code is designed for a noiseless channel and then the modulation is optimized to minimize end-
to-end distortion. An example of this approach is given in [49], where compression by a vector quantizer
(VQ) is followed by multicarrier modulation, and the modulation provides unequal error protection to
the different source bits by assigning different powers to each subcarrier.
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Channel-optimized source coding is another approach to joint source and channel coding. In this
technique the source code is optimized based on the error probability associated with the channel code,
where the channel code is designed independent of the source. Examples of work taking this approach
include the channel-optimized vector quantizer (COVQ) and its scalar variation [50, 51]. Source-optimized
channel coding and modulation can be combined with channel-optimized source coding using an iterative
design. This approach is used for the joint design of a COVQ and multicarrier modulation in [52] and
for the joint design of a COVQ and RCPC channel code in [53]. Combined trellis coded modulation and
trellis-coded quantization, a source coding strategy that borrows from the basic premise of trellis-
coded modulation, is investigated in [54, 55]. All of this work on joint source and channel code design
indicates that significant performance advantages are possible when the source and channel codes are
jointly designed. Moreover, many sophisticated channel code designs, such as turbo and LDPC codes,
have not yet been combined with source codes in a joint optimization. Thus, much more work is needed
in the broad area of joint source and channel coding to optimize performance for different applications.
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Chapter 8 Problems

1. Consider a (3,1) linear block code where each codeword consists of 3 data bits and one parity bit.

(a) Find all codewords in this code.

(b) Find the minimum distance of the code.

2. Consider a (7,4) code with generator matrix

G =




0 1 0 1 1 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 0 0 0 0 1


 .

(a) Find all the codewords of the code.

(b) What is the minimum distance of the code?

(c) Find the parity check matrix of the code.

(d) Find the syndrome for the received vector R = [1101011].

(e) Assuming an information bit sequence of all 0s, find all minimum weight error patterns e that
result in a valid codeword that is not the all zero codeword.

(f) Use row and column operations to reduce G to systematic form and find its corresponding
parity check matrix. Sketch a shift register implementation of this systematic code.

3. All Hamming codes have a minimum distance of 3. What is the error-correction and error-detection
capability of a Hamming code?

4. The (15,11) Hamming code has generator polynomial g(X) = 1 + X + X4. Determine if the
codewords described by polynomials c1(X) = 1 + X + X3 + X7 and c2(X) = 1 + X3 +X5 +X6

are valid codewords for this generator polynomial. Also find the systematic form of this polynomial
p(X) +Xn−ku(X) that generates the codewords in systematic form.

5. The (7,4) cyclic Hamming code has a generator polynomial g(X) = 1 +X2 +X3.

(a) Find the generator matrix for this code in systematic form.

(b) Find the parity check matrix for the code.

(c) Suppose the codeword C = [1011010] is transmitted through a channel and the corresponding
received codeword is C = [1010011]. Find the syndrome polynomial associated with this
received codeword.

(d) Find all possible received codewords such that for transmitted codeword C = [1011010], the
received codeword has a syndrome polynomial of zero.

6. The weight distribution of a Hamming code of block length n is given by

N(x) =
n∑
i=0

Nix
i =

1
n+ 1

[
(1 + x)n + n(1 + x).5(n−1)(1 − x).5(n+1)

]
,

where Ni denotes the number of codewords of weight i.
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(a) Use this formula to determine the weight distribution of a Hamming (7,4) code.

(b) Use the weight distribution from part (a) to find the union upper bound based on weight
distribution (8.40) for a Hamming (7,4) code, assuming BPSK modulation of the coded bits
with γ = 10 dB. Compare with the probability of error from the looser bound (8.41) for the
same modulation.

7. Find the union upper bound on probability of codeword error for a Hamming code with m = 7.
Assume the coded bits are transmitted over an AWGN channel using 8PSK modulation with an SNR
of 10 dB. Compute the probability of bit error for the code assuming a codeword error corresponds
to one bit error, and compare with the bit error probability for uncoded modulation.

8. Plot Pb versus γb for a (5,2) linear block code with dmin = 3 and 0 ≤ Eb/N0 ≤ 20 dB using the
union bound for probability of codeword error. Assume the coded bits are transmitted over the
channel using QPSK modulation. Over what range of Eb/N0 does the code exhibit negative coding
gain?

9. Find the approximate coding gain (8.49) of a (7,4) Hamming code with SDD over uncoded modu-
lation assuming γb = 15 dB.

10. Plot the probability of codeword error for a (24,12) code with dmin = 8 for 0 ≤ γb ≤ 10 dB under
both hard and soft decoding, using the union bound for hard decoding and the approximation
(8.49) for soft decoding. What is the difference in coding gain at high SNR for the two decoding
techniques?

11. Evalute the upper and lower bounds on codeword error probability, (8.37) and (8.38) respectively,
for an extended Golay code with HDD, assuming an AWGN channel with BPSK modulation and
an SNR of 10 dB.

12. Consider a Reed Solomon code with k = 3 and K = 4, mapping to 8PSK modulation. Find the
number of errors that can be corrected with this code and its minimum distance. Also find its
probability of bit error assuming the coded symbols transmitted over the channel via 8PSK have
PM = 10−3.

13. In a Rayleigh fading channel, determine an upper bound for the bit error probability Pb of a Golay
(23,12) code with deep interleaving (dTs >> Tc), BPSK modulation, soft-decision decoding, and
an average coded Ec/N0 of 15 dB. Compare with the uncoded Pb in Rayleigh fading.

14. Consider a Rayleigh fading channel with BPSK modulation, average SNR of dB, and a doppler of
80 Hz. The data rate over the channel is 30 Kbps. Assume that bit errors occur on this channel
whenever Pb(γ) ≥ 10−2. Design an interleaver and associated (n, k) block code which corrects
essentially all of the bit errors, where the interleaver delay is constrained to be less than 5 msec.
Your design should include the dimensions of the interleaver, as well as the block code type and the
values of n and k.

15. For the trellis of Figure 8.8, determine the state sequence and encoder output assuming an initial
state S = 00 and information bit sequence U = [0110101101].

16. Consider the convolutional code generated by the encoder shown in Figure 8.24.

(a) Sketch the trellis diagram of the code.
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(b) Find the path metric for the all-zero path, assuming probability of symbol error p = 10−3.

(c) Find one path at a minimum Hamming distance from the all-zero path and compute its path
metric for the same p as in part (b).

17. This problem is based on the convolutional encoder of Figure 8.24.

(a) Draw the state diagram for this convolutional encoder.

(b) Determine its transfer function T (D,N, J).

(c) Determine the minimum distance of paths through the trellis to the all-zero path.

(d) Compute the upper bound (8.75) on probability of bit error for this code assuming SDD and
BPSK modulation with γb = 10 dB.

(e) Compute the upper bound (8.79) on probability of bit error for this code assuming HDD and
BPSK modulation with γb = 10 dB. How much coding gain is achieved with soft versus hard
decoding?

18. Consider a channel with coherence time Tc = 10 msec and a coded bit rate of Rs = 50, 000 Kilosym-
bols per second. Find the average delay of a convolutional interleaver that achieves independent
fading between subsequent coded bits. Also find the memory requirements of the system.

19. Suppose you have a 16QAM signal constellation which is trellis encoded using the following scheme:

The set partitioning for 16 QAM is shown in Figure 8.20.

(a) Assuming that parallel transitions dominate the error probability, what is the coding gain of
this trellis code relative to uncoded 8PSK, given that d0 for the 16QAM is .632 and d0 for the
8PSK is .765?

(b) Draw the trellis for this scheme, and assign subsets to the transitions according to the heuristic
rules of Ungerboeck.
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Uncoded Bits

Figure 8.25: 16QAM Trellis Encoder.

(c) What is the minimum distance error event through the trellis relative to the path generated
by the all zero bit stream?

(d) Assuming that your answer to part (c) is the minimum distance error event for the trellis,
what is dmin of the code?

(e) Draw the trellis structure and assign transitions assuming that the convolutional encoder is
rate 2/3 (so uncoded bits b2 and b3 are input, and 3 coded bits are output).

20. Assume a multilevel encoder as in Figure 8.21 where the information bits have three different error
protection levels (M = 3) and the three encoder outputs are modulated using 8PSK modulation.
Assume the code Ci associated with the ith bit stream bi is a Hamming code with parameter mi,
where m1 = 2, m2 = 3, and m3 = 4.

(a) Find the probability of error for each Hamming code Ci assuming it is decoded individually
using HDD.

(b) If the symbol time of the 8PSK modulation is Ts = 10 µsec, what is the data rate for each of
the 3 bit streams?

(c) For what size code must the maximum-likelihood decoder of this UEP code be designed?

21. Design a two-level UEP code using either Hamming or Golay codes such that for a channel with an
SNR of 10 dB, the UEP code has Pb = 10−3 for the low-priority bits and Pb = 10−6 for the high
priority bits.
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Chapter 9

Adaptive Modulation

9.1 Introduction

High-speed wireless data transmission requires robust and spectrally-efficient communication techniques
for flat-fading channels. When the channel can be estimated and this estimate sent back to the trans-
mitter, the transmission scheme can be adapted relative to the channel characteristics. Most modulation
and coding techniques do not adapt to fading conditions. These nonadaptive methods require a fixed
link margin to maintain acceptable performance when the channel quality is poor. Thus, these systems
are effectively designed for the worst-case channel conditions, resulting in insufficient utilization of the
full channel capacity. Adapting to the signal fading allows the channel to be used more efficiently, since
power and rate can be allocated to take advantage of favorable channel conditions. In Chapter 4.3.4,
the optimal adaptive transmission scheme that achieves the Shannon capacity of a fading channel was
derived. In this chapter we develop practical variable-rate variable-power MQAM modulation techniques
for fading channels.

Adaptive transmission, which requires accurate channel estimates at the receiver and a reliable
feedback path between the receiver and transmitter, was first proposed in the late sixties [3]. Interest in
these techniques was short-lived, perhaps due to hardware constraints, lack of good channel estimation
techniques, and/or systems focusing on point-to-point radio links without transmitter feedback. The
fact that these issues are less constraining in current systems, coupled with the growing demand for
spectrally-efficient communication, has revived interest in adaptive modulation methods. The basic idea
behind adaptive transmission is to maintain a constant Eb/N0 by varying the transmitted power level [3],
symbol transmission rate [4], constellation size [5, 6, 7], coding rate/scheme [8], or any combination of
these parameters [9, 10, 11]. Thus, without increasing probability of error, also called the Bit Error
Rate (BER), these schemes provide high average spectral efficiency by transmitting at high speeds under
favorable channel conditions, and reducing throughput as the channel degrades. The performance of
these schemes is further improved by combining them with space diversity [12, 13]. Adaptive techniques
are also used for high-speed modems [14, 15], satellite links [16, 17, 18], and to minimize distortion or
satisfy Quality-of-Service requirements in end-to-end wireless applications. [19, 20]. Our approach is
novel relative to all of these adaptive techniques in that we optimize both the transmission rate and power
to maximize spectral efficiency, while satisfying average power and BER constraints. Although we restrict
ourselves to MQAM signal constellations, the same adaptive techniques can be applied to lattice-based
constellations [21], which exhibit 1-1.5 dB of shaping gain relative to MQAM.

Cellular systems exploit the power falloff with distance of signal propagation to reuse the same
frequency channel at spatially separated locations. While frequency-reuse provides more efficient use
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of the limited available spectrum within a given area, it also introduces co-channel interference, which
ultimately determines the data rates and corresponding BERs available to each user. Thus, although
adaptive modulation techniques increase the spectral efficiency (b/s/Hz) of a single channel, these tech-
niques may also increase co-channel interference levels in a cellular system, thereby requiring a higher
reuse distance to mitigate this increased interference power. Adaptive modulation may therefore reduce
the area spectral efficiency1 of a cellular system, defined as its average b/s/Hz/km2. Indeed, while we
show in this chapter that channel inversion can significantly reduce the spectral efficiency of a single user
relative to optimal adaptation, this inversion is necessary in CDMA cellular systems without multiuser
detection to reduce the near-far effect [22, 23]. The area spectral efficiency of FDMA/TDMA cellular
systems with the adaptive policies described in this chapter are analyzed in [24], where it is shown that
power adaptation typically reduces area spectral efficiency, while rate adaptation improves it. We do not
consider the effect of co-channel interference in our analysis below. Thus, our results apply to systems
without frequency reuse, or to cellular systems where the co-channel interference is significantly mitigated
through cell isolation, sectorization, or adaptive antennas.

There are several practical constraints which determine when adaptive modulation should be used.
If the channel is changing faster than it can be estimated and fed back to the transmitter, adaptive
techniques will perform poorly, and other means of mitigating the effects of fading should be used. In
Chapter 9.6 we find that, for a target BER of 10−6, the BER remains at its target level as long as
the total delay of the channel estimator and feedback path is less than .001λ/v, where v is the vehicle
speed and λ the signal wavelength. Thus, at pedestrian speeds of 3.6 Km/Hr the total delay should not
exceed 1 ms, and at vehicle speeds of 90 Km/Hr the total delay should not exceed 40 µsec. The former
constraint is within the capabilities of existing estimation techniques and feedback channels, while the
latter constraint is more challenging. However, a higher BER target loosens the delay constraint: at 10−3

BER a total delay constraint of less than .01λ/v suffices for good performance. The effects of estimation
error are also characterized in Section 7, where we find that the estimation error must be less than 1 dB
to maintain the target BER. In Rayleigh fading this bound on estimation error can be achieved using
the pilot-symbol assisted estimation technique described in [25] with appropriate choice of parameters.2

Finally, hardware constraints may dictate how often the transmitter can change its rate and/or power.
As part of our analysis we will derive a closed-form expression for how often the transmitter must adapt
its signal constellation as a function of the Doppler frequency fD = v/λ.

9.2 System Model

Consider a discrete-time channel with stationary and ergodic time-varying gain
√
g[i] and additive white

Gaussian noise n[i]. Let S denote the average transmit signal power, N0/2 denote the power spectral
density of the complex noise n[i], B denote the received signal bandwidth, and g denote the average
channel gain. The received noise power is thus 2B × N0/2 = N0B. With appropriate scaling of S we
can assume that g = 1. For a constant transmit power S, the instantaneous received SNR is γ[i] =
Sg[i]/(N0B) and the average received SNR is γ = S/(N0B). Suppose, however, that we adapt the
transmit power at time i based on the channel estimate ĝ[i] or, equivalently, on γ̂[i] = Sĝ[i]/(N0B). We
denote the transmit power at time i with this adaptive scheme by S(γ̂[i]), and the received power at time
i is then γ[i]S(γ̂[i])

S
. Since g[i] is stationary, the distribution of γ[i] is independent of i, and we denote this

1Unfortunately, the area spectral efficiency is often referred to as just spectral efficiency, which causes some confusion
between the two definitions. In this chapter spectral efficiency refers to the b/s/Hz of a single-user channel.

2There will be some loss of spectral efficiency for this estimation technique since the pilot symbol rate must be subtracted
from the transmitted symbol rate.

278

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


distribution by p(γ). When the context is clear, we will omit the time reference i relative to γ and S(γ).
The system model is illustrated in Figure 9.1. We assume that an estimate ĝ[i] of the channel

power gain g[i] at time i is available to the receiver after an estimation time delay of τe and that this
same estimate is available to the transmitter after a combined estimation and feedback path delay of
τ = τe + τf . We also assume ideal coherent phase detection. The channel gain estimation error ε[i]
is defined as ε[i] = ĝ[i]/g[i] = γ̂[i]/γ[i]. We assume that the feedback path does not introduce any
errors, which can be assured by increasing its delay time and using an ARQ transmission protocol. The
availability of channel information at the transmitter allows it to adapt its transmission scheme relative
to the channel variation. We will initially ignore the effects of estimation error and delay, assuming ε = 1
and τ = 0. We then relax these assumptions and determine closed-form expressions for the increase in
BER resulting from these effects.

ĝ[i]

TRANSMITTER CHANNEL RECEIVER

r[i]  Power
Control
   S[i]

x[i]

r̂[i]

y[i]

n[i]g[i]

Adaptive
Modulation
and Coding

FEEDBACK CHANNEL

Delay
τ f

Delay:
Error:

τe
ε

Channel Estimate

Demodulation
and Decoding

ĝ[i]

Figure 9.1: System Model.

We will assume p(γ) to be either log-normal or exponential (Rayleigh fading) in the numerical calcu-
lations below, although our formulas apply for any distribution of γ. The log-normal distribution arises
from attenuation of the transmitted signal by surrounding buildings, and the exponential distribution
arises from multipath [26]. Although both types of fading will typically be superimposed on the received
signal, we consider the two distributions separately for the following reasons. At low speeds the log-normal
shadowing is essentially constant, and the Rayleigh fading is sufficiently slow so that it can be estimated
and fed back to the transmitter with an estimation error and delay that does not significantly degrade
performance. At high speeds these effects may become nonnegligible. In this case, most of the Rayleigh
fading can be removed with a sufficient number of diversity branches at the transmitter or receiver, in
which case the adaptive modulation need only respond to log-normal channel variations.

The rate of channel variation will dictate how often the transmitter must adapt its rate and/or
power, and will also impact the BER increase due to estimation error and delay. For Rayleigh fading we
assume the standard Jakes model for the autocorrelation of the channel power gain over time [26]:

Ag(τ) = J2
o (2πvτ/λ), (9.1)

where v is the mobile user’s velocity and λ is the RF wavelength.
The autocorrelation function for log-normal shadowing is not well-characterized. However, measure-

ments reported in [27] support an autoregressive model:

Ag(τ) = e−v|τ |/Xc , (9.2)

where Xc is the effective autocorrelation distance of the log-normal shadowing. This distance is on the
order of 10-100 m, depending on propagation distance [28].
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9.3 Variable-Rate Variable-Power MQAM

Shannon capacity places no restriction on the complexity or delay of the multiplexed transmission scheme
which achieves capacity. In fact, Shannon theory doesn’t tell us anything about how to design this
scheme. Therefore, the main emphasis of this chapter is on practical adaptive modulation methods and
their spectral efficiency relative to the theoretical capacity results obtained in Chapter 4. Specifically,
we consider a variable-rate and variable-power modulation method using MQAM signal constellations.
We will see that the same optimization of power and rate that achieves capacity (Chapter 6.3.3) can be
applied to our MQAM design. We also obtain a formula for the efficiency difference between our adaptive
MQAM technique and the fading channel capacity.

Consider a family of MQAM signal constellations with a fixed symbol time Ts, where M denotes the
number of points in each signal constellation and we assume ideal Nyquist data pulses (sinc[t/Ts]) for
each constellation3. Let S, B, N0, γ = Sg

N0B
, and γ = S

N0B
be as given in our system model. Since each of

our MQAM constellations have Nyquist data pulses (B = 1/Ts), the average Es/N0 equals the average
SNR:

Es
N0

=
STs
N0

= γ. (9.3)

The spectral efficiency of our modulation scheme equals its data rate per unit bandwidth (R/B). For
fixed M , R = (log2M)/Ts. The spectral efficiency for fixed M is therefore log2M , the number of bits
per symbol. This efficiency is typically parameterized by the average transmit power S and the BER of
the modulation technique.

In [30] the BER for an AWGN channel with MQAM modulation, ideal coherent phase detection,
and SNR γ is bounded by

BER ≤ 2e−1.5γ/(M−1). (9.4)

A tighter bound good to within 1dB for M ≥ 4 and 0 ≤ γ ≤ 30dB is

BER ≤ .2e−1.5γ/(M−1). (9.5)

Note that these expressions are only bounds, and may differ from BER expressions found in other text-
books. We use these bounds since they are easy to invert, so we can obtain M as a function of a target
BER, as we will see shortly.

In a fading channel with nonadaptive transmission (constant transmit power and rate), the received
SNR varies with time. The BER in this case is obtained by integrating the BER in AWGN over the
fading distribution p(γ). For BPSK (M = 2) in Rayleigh fading, this integration yields BER ≈ 1

4γ at
large SNRs (6.58). Without transmitter adaptation, we therefore require γ = 24 dB to obtain a spectral
efficiency of 1 at 10−3 BER. For M ≥ 4 we can bound the average BER by integrating over (9.5):

BER ≤
∫
.2e−1.5γ/(M−1)p(γ)dγ, M ≥ 4. (9.6)

Setting M = 4 in (9.6) yields a required average SNR of γ = 26 dB to obtain a spectral efficiency of 2
at 10−3 BER. We will see below that adaptive techniques yield much higher spectral efficiencies at these
BER and power specifications.

We now consider adapting the transmit power S(γ) relative to γ, subject to the average power
constraint S. The received SNR is then γS(γ)/S, and the BER bound for each value of γ becomes

BER(γ) ≤ .2 exp
[−1.5γ
M − 1

S(γ)
S

]
. (9.7)

3Practical Nyquist filters with non-zero excess bandwidth will reduce the spectral efficiency.
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We can also adjust M and S(γ) to maintain a fixed BER. Rearranging (9.7) yields the following maximum
constellation size for a given BER:

M(γ) = 1 +
1.5γ

− ln(5BER)
S(γ)
S

= 1 + γK
S(γ)
S

, (9.8)

where
K =

−1.5
ln(5BER)

< 1. (9.9)

We maximize spectral efficiency by maximizing

E[log2M(γ)] =
∫

log2

(
1 +

KγS(γ)
S

)
p(γ)dγ, (9.10)

subject to the power constraint ∫
S(γ)p(γ)dγ = S. (9.11)

The power control policy that maximizes (9.10) has the same form as the optimal power control
policy (4.12) that achieves capacity:

S(γ)
S

=

{
1
γ0

− 1
γK γ ≥ γ0/K

0 γ < γ0/K
, (9.12)

where γ0 is the optimized cutoff fade depth. If we define γK = γ0/K and substitute (9.12) into (9.8) and
(9.10) we get that the instantaneous rate is given by M(γ) = γ/γK and the maximum spectral efficiency
is given by

R

B
=
∫ ∞

γK

log2

(
γ

γK

)
p(γ)dγ. (9.13)

Comparing the power adaptations (4.12) and (9.12) and the spectral efficiencies (4.13) and (9.13) we
see that the power adaptation and spectral efficiency for both the optimal transmission scheme and our
MQAM technique are the same, with an effective power loss of K in the latter case. In other words, there
is a simple relationship between the maximum spectral efficiency of a fading channel and the spectral
efficiency of our uncoded adaptive MQAM technique: uncoded MQAM has an effective power loss of K
relative to the optimal transmission scheme, independent of the fading distribution. Thus, if the capacity
of a fading channel is R bps/Hz at SNR γ, uncoded adaptive MQAM requires a received SNR of γ/K
to achieve the same rate. Equivalently, K is the maximum possible coding gain for our adaptive MQAM
method. We discuss coding techniques for our adaptive modulation later in the chapter. It is interesting
to note that this constant gap between Shannon capacity and the spectral efficiency of MQAM has also
been reported for time-invariant channels with ISI and decision-feedback equalization [32, 33].

We compute the efficiency (9.13) at BERs of 10−3 and 10−6 for both log-normal shadowing (relative
to the average dB received power and for a standard deviation σ = 8dB) and Rayleigh fading in Figures 9.2
and 9.3, respectively. We also plot the capacity (6.10) in these figures for comparison. Note that the gap
between (9.13) and (6.10) is the constant K, which is a simple function of the BER (9.9).

We can also apply the suboptimal policies of total and truncated channel inversion to adaptive
MQAM. The spectral efficiency with total channel inversion is obtained by substituting S(γ)/S = σ/γ
in (9.8) with σ = ([1/γ])−1:

R

B
= log2

(
1 +

−1.5
ln(5BER)[1/γ]

)
. (9.14)
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Figure 9.2: Efficiency in Log-Normal Shadowing (σ = 8dB).
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Figure 9.3: Efficiency in Rayleigh Fading.

This spectral efficiency is based on the tight bound (9.5); if R/B < 4 the loose bound (9.4) must be used
and the spectral efficiency recalculated.

With truncated channel inversion the channel is only used when γ > γ0. Thus, the spectral efficiency
with truncated channel inversion is obtained by substituting (6.13) into (9.8) and multiplying by the
probability that γ > γ0. The maximum value is obtained by optimizing relative to the cutoff level γ0:

R

B
= max

γ0
log2

(
1 +

−1.5
ln(5BER)[1/γ]γ0

)
p(γ > γ0). (9.15)

The spectral efficiency of MQAM with these suboptimal policies, in both log-normal and Rayleigh fading,
is evaluated in [34, Figures 3-4].

The spectral efficiencies (9.13), (9.14), and (9.15) place no restrictions on the constellation size;
indeed, the size is not even restricted to integer values. While transmission at noninteger rates is possible,
the complexity is quite high [40]. Moreover, it is difficult in practice to continually adapt the transmit
power and constellation size to the channel fading, particularly in fast fading environments. Thus, we
now consider restricting the constellation size to just a handful of values. This will clearly impact the
spectral efficiency though, surprisingly, not by very much.
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9.4 Constellation Restriction

We now restrict ourselves to MQAM constellations of size M0 = 0, M1 = 2, and Mj = 22(j−1), j =
2, ..., N . We use square constellations for large M due to their inherent spectral efficiency and ease of
implementation [31]. We first consider the impact of this restriction on the spectral efficiency of the
optimal adaptation policy. We then determine the effect on the channel inversion policies.

9.4.1 Optimal Adaptation

We now consider optimizing the variable-rate variable-power MQAM transmission scheme subject to
the constellation restrictions described above. Thus, at each symbol time we transmit a symbol from a
constellation in the set {Mj : j = 0, 1, . . . , N}: the choice of constellation depends on the fade level γ over
that symbol time. Choosing the M0 constellation corresponds to no data transmission. For each value
of γ, we must decide which constellation to transmit and what the associated transmit power should be.
The rate at which the transmitter must change its constellation and power is analyzed below. Since the
power adaptation is continuous while the constellation size is discrete, we call this the continuous-power
discrete-rate adaptation scheme.

We determine the constellation size associated with each γ by discretizing the range of channel fade
levels. Specifically, we divide the range of γ into N + 1 fading regions and associate the constellation Mj

with the jth region. The data rate for γ values falling in the jth region is thus log2Mj bits per symbol.
If the symbol time T = 1/B then we get a data rate of (1/T ) log2Mj = B log2Mj bits per second.

We set the region boundaries as follows. Define

M(γ) =
γ

γ∗K
, (9.16)

where γ∗K > 0 is a parameter that will later be optimized to maximize spectral efficiency. Note that
substituting (9.12) into (9.8) yields (9.16) with γ∗K = γK . Therefore the appropriate choice of γ∗K in
(9.16) defines the optimal constellation size for each γ when there is no constellation restriction.

Assume now that γ∗K is fixed and define MN+1 = ∞. To obtain the constellation size Mj for a fixed γ,
we first computeM(γ) from (9.16). We then find j such thatMj ≤M(γ) < Mj+1 and assign constellation
Mj to this γ value. Thus, for a fixed γ, we transmit the largest constellation in our set {Mj : j = 0, . . . , N}
that is smaller than M(γ). For example, if the fade level γ satisfies 2 ≤ γ/γ∗K < 4 we transmit the 2-
QAM signal constellation. The region boundaries are located at γ = γ∗KMj , j = 0, . . . , N + 1. Clearly,
increasing the number of discrete signal constellations N yields a better approximation to the continuous
adaptation (9.8), resulting in a higher spectral efficiency.

Once the regions and associated constellations are fixed we must find a power control policy that
satisfies the BER requirement and the power constraint. By (9.8) we can maintain a fixed BER for the
constellation Mj > 0 using the power control policy

Sj(γ)
S

=

{
(Mj − 1) 1

γK Mj <
γ
γ∗K

≤Mj+1

0 Mj = 0
. (9.17)

A fixed BER implies that the received Es/N0 for each constellation Mj is constant:

Es(j)
N0

=
γSj(γ)
S

=
Mj − 1
K

, (9.18)

where Sj(γ)/S is defined in (9.17). In Table 1 we tabulate the constellation size and power adaptation
as a function of γ and γ∗K for 5 fading regions.
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Region(j) γ Range Mj Sj(γ)/S
0 0 ≤ γ/γ∗K < 2 0 0
1 2 ≤ γ/γ∗K < 4 2 1

Kγ

2 4 ≤ γ/γ∗K < 16 4 3
Kγ

3 16 ≤ γ/γ∗K < 64 16 15
Kγ

4 64 ≤ γ/γ∗K <∞ 64 63
Kγ

Table 9.1: Rate and Power Adaptation for 5 Regions.

The spectral efficiency for this discrete-rate policy is just the sum of the data rates associated with
each of the regions multiplied by the probability that γ falls in that region:

R

B
=

N∑
j=1

log2(Mj)p(Mj ≤ γ/γ∗K < Mj+1). (9.19)

Since Mj is a function of γ∗K , we can maximize (9.19) relative to γ∗K , subject to the power constraint

N∑
j=1

∫ γ∗KMj+1

γ∗KMj

Sj(γ)
S

p(γ)dγ = 1, (9.20)

where Sj(γ)/S is defined in (9.17). There is no closed-form solution for the optimal γ∗K : in the calculations
below it was found using numerical search techniques.

In Figures 9.4 and 9.5 we show the maximum of (9.19) versus the number of regions (N + 1) for
log-normal shadowing and Rayleigh fading, respectively. We assume a BER of 10−3 for both plots. From
Figure 9.4 we see that restricting our adaptive policy to just 6 different signal constellations (Mj =
0, 2, 4, 16, 64, 256) results in a spectral efficiency that is within 1 dB of the efficiency obtained with
continuous-rate adaptation (9.13). A similar result holds for Rayleigh fading using 5 constellations
(Mj =0,2,4,16,64).
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Figure 9.4: Discrete-Rate Efficiency in Log-Normal Shadowing (σ = 8dB.)

We can simplify our discrete-rate policy even further by using a constant transmit power for each
constellation Mj . Thus, each fading region is associated with one signal constellation and one transmit
power. We call this the discrete-power discrete-rate policy. Ideally, the fixed transmit power associated
with each region should be optimized to maximize spectral efficiency. However, since we do not have a
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Figure 9.5: Discrete-Rate Efficiency in Rayleigh Fading.

closed-form expression for the spectral efficiency of this policy, we cannot perform the optimization. We
will present simulation results for this policy in Chapter 9.5 using suboptimal transmit power values. Even
with this suboptimal choice, these simulations demonstrate that keeping the transmit power constant in
each region results in less than 2 dBs of power loss relative to the continuous-power discrete-rate policy.

The choice of the number of regions to use in the adaptive policy will depend on how fast the
channel is changing as well as on the hardware constraints, which dictate how many constellations are
available to the transmitter and at what rate the transmitter can change its constellation and power.
For constellation adaptation on a per-symbol basis, the number of regions must be chosen such that the
channel gain stays within one region over a symbol time. However, hardware constraints may dictate that
the constellation remain constant over tens or even hundreds of symbols. In addition, power-amplifier
linearity requirements and out-of-band emission constraints may restrict the rate at which power can be
adapted. An in-depth discussion of hardware implementation issues and a description of a VLSI prototype
can be found in [35]. Hardware advances will eventually make today’s constraints obsolete. However,
determining how long the channel gain remains within a particular region is of interest, since it determines
the tradeoff between the number of regions and the rate of power and constellation adaptation. We now
derive this value.

Let τj denote the average time duration that γ stays within the jth fading region. Let Aj = γ∗KMj

for γ∗K and Mj as defined above. The jth fading region is then defined as {γ : Aj ≤ γ < Aj+1}. We call
τj the jth average fade region duration (AFRD). This definition is similar to the average fade duration
(AFD) (Chapter 3.2.3), except that the AFD measures the average time that γ stays below a single level,
whereas we are interested in the average time that γ stays between two levels. For the worst-case region
(j = 0) these two definitions coincide.

Determining the exact value of τj requires a complex derivation based on the joint density p(γ, γ̇), and
remains an open problem. However, we can obtain a good approximation using the finite-state Markov
model derived in [36]. In that paper, fading is approximated as a discrete-time Markov process with time
discretized to the symbol period Ts. The underlying assumption of the model is that γ remains within
one region over a symbol period and from a given region the process can only transition to the same
region or to adjacent regions. These assumptions are consistent with our model, where γ stays within
one region over a symbol time. The transition probabilities between regions under this assumption are
given as

pj,j+1 =
Nj+1Ts
πj

, pj,j−1 =
NjTs
πj

, pj,j = 1 − pj,j+1 − pj,j−1, (9.21)
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where Nj is the level-crossing rate at Aj and πj is the steady-state distribution corresponding to the jth
region: πj = p(Aj ≤ γ < Aj+1). Since the time in which the Markov process stays in a given state is
geometrically distributed [37, 2.66], τj is given by

τj =
Ts

pj,j+1 + pj,j−1
=

πj
Nj+1 +Nj

. (9.22)

The value of τj is thus a simple function of the level crossing rate and the fading distribution. While
the level crossing rate is known for Rayleigh fading [26, Section 1.3.4], it cannot be obtained for log-normal
shadowing since the joint distribution p(γ, γ̇) for this fading type is unknown.

In Rayleigh fading the level crossing rate is given by

Nj =

√
2πAj
γ

fDe
−Aj/γ , (9.23)

where fD = v/λ is the Doppler frequency. Substituting (9.23) into (9.22) it is easily seen that τj is
inversely proportional to the Doppler frequency. Moreover, since πj and Aj do not depend on fD, if
we compute τj for a given Doppler frequency fD, we can compute τ̂j corresponding to another Doppler
frequency f̂D as

τ̂j =
fD

f̂D
τj . (9.24)

We tabulate below the τj values corresponding to five regions (Mj = 0, 2, 4, 16, 64) in Rayleigh fading4

for fD = 100Hz and two average power levels: γ = 10dB (γ∗K = 1.22) and γ = 20dB (γ∗K = 1.685). The
AFRD for other Doppler frequencies is easily obtained using the table values and (9.24). This table
indicates that, even at high velocities, for symbol rates of 100 Kilosymbols/sec the discrete-rate discrete-
power policy will maintain the same constellation and transmit power over tens to hundreds of symbols.

Region(j) γ = 10dB γ = 20dB
0 2.23ms .737ms
1 .830ms .301ms
2 3.00ms 1.06ms
3 2.83ms 2.28ms
4 1.43ms 3.84ms

Table 9.2: Average Fade Region Duration τj for fD = 100Hz.

In shadow fading we can obtain a coarse approximation for τj based on the autocorrelation function
(9.2). Specifically, if τj ≈ .1Xc/v then the correlation between fade levels separated in time by τj is .9.
Thus, for a small number of regions it is likely that γ will remain within the same region over this time
period.

9.4.2 Suboptimal Policies

A restriction on allowable signal constellations will also affect the total channel inversion and truncated
channel inversion policies. Specifically, although the power adaptation policies remain the same, the
constellation must be chosen from the signal set M = {0, 2, 4, 16, 64, 256}. For total channel inversion
the spectral efficiency with this restriction is thus

4The validity of the finite-state Markov model for Rayleigh fading channels has been confirmed in [38].
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R

B
=

⌊
log2

(
1 +

−1.5
ln(5BER)[1/γ]

)⌋
M
, (9.25)

where bxcM denotes the largest number in the set M less than or equal to x. The spectral efficiency with
this policy will be restricted to values of log2M, M ∈ M, with discrete jumps at the γ values where the
spectral efficiency without constellation restriction (9.14) equals M . For truncated channel inversion the
spectral efficiency is given by

R

B
= max

γ0

⌊
log2

(
1 +

−1.5
ln(5BER)[1/γ]γ0

)⌋
M
p(γ > γ0). (9.26)

9.5 Simulation Results

We now present simulation results for adaptive modulation performance. The simulations were done
using COSSAP, where fixed-rate transmitter and receiver modules were used as building blocks for the
variable-rate transmitter and receiver simulation. The Rayleigh and log-normal shadowing simulation
modules in the COSSAP library were used [39], with velocity entered as a parameter. The velocity was
chosen so that, over a symbol time Ts, γ stays within one region with high probability. The constellation
size transmitted at each symbol time was determined using the discrete-rate adaptive policy outlined
in the previous section, assuming perfect instantaneous knowledge of the simulated fade level γ at the
transmitter and receiver. The target BER of the adaptive policy was 10−3. We also assumed coherent
phase detection at the receiver. Gray coding was used for bit mapping to the MQAM constellations.

We expect our simulated BER to be slightly smaller than the target BER, since (9.7) is an upper
bound. An exact BER expression for MQAM with two-dimensional Gray coding is [41]

BER(M) = αM erfc

(√
βM

Eb
N0

)
+ H.O.T.s, (9.27)

where αM and βM are constants which depend on M and the higher order terms (H.O.T.s) are negligible.
Moreover, for our continuous-power discrete-rate policy, the Eb/N0 for the jth signal constellation is
approximately

Eb(j)
N0

=
Es(j)
N0

1
log2Mj

=
Mj − 1
K log2Mj

. (9.28)

We obtain the exact BER for our adaptive policy by averaging over the BER (9.27) for each signal
constellation:

BER =
N∑
j=1

αMj erfc

(√
βMj(Mj − 1)
K log2Mj

)∫ γ∗KMj+1

γ∗KMj

p(γ)dγ. (9.29)

We plot (9.29) and the simulated BER in Figures 9.6 and 9.7 for log-normal shadowing and Rayleigh
fading, respectively. These simulation results are slightly better than the analytical calculation of (9.29),
and both are smaller than the target BER of 10−3, for γ > 10 dB. The BER bound of 10−3 breaks down
at low SNRs, since (9.5) is not applicable to 2-QAM, and we must use the looser bound (9.4). Since our
adaptive policy will use the 2-QAM constellation often at low SNRs, the BER will be larger than that
predicted from the tight bound (9.5).

The fact that the simulated BER is less than our target at high SNRs implies that the analytical
calculations in Figures 9.4 and 9.5 are pessimistic. A slightly higher efficiency could be achieved while
still maintaining the target BER of 10−3.
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Figure 9.6: BER for Log-Normal Shadowing (6 Regions).
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Figure 9.7: BER for Rayleigh Fading (5 Regions).

In Figures 9.8 and 9.9 we show the simulated spectral efficiency corresponding to this simulated
BER for the continuous-power discrete-rate policy. These figures also show the simulated efficiency of the
discrete-power discrete-rate policy, where the transmit power for each region was chosen to achieve the
same simulated BER as the continuous-power discrete-rate policy. We see that even with this suboptimal
choice of power assignment, keeping the power constant for each transmit constellation results in a power
loss of just 1-2 dB relative to continuous power adaptation. For comparison, we also plot the maximum
efficiency (9.13) for continuous power and rate adaptation. Both discrete-rate policies have simulated
performance that is within 3 dB of this theoretical maximum.

These figures also show the spectral efficiency of fixed-rate transmission with truncated channel
inversion (9.26). The efficiency of this scheme is quite close to that of the discrete-power discrete-rate
policy. However, to achieve this high efficiency, the optimal γ0 is quite large, with a corresponding outage
probability Pout = p(γ ≤ γ0) ranging from .1 to .6. Thus, this policy is similar to packet radio, with
bursts of high speed data when the channel conditions are favorable. The efficiency of total channel
inversion (9.25) is also shown for log-normal shadowing: this efficiency equals zero in Rayleigh fading.
We also plot the spectral efficiency of nonadaptive transmission, where both the transmission rate and
power are constant. The average BER in this case is obtained by integrating the probability of error
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Figure 9.8: Efficiency in Log-Normal Shadowing (σ = 8dB).
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Figure 9.9: Efficiency in Rayleigh Fading.

(9.27) against the fade distribution p(γ). The spectral efficiency is obtained by determining the value
of M which yields a 10−3 BER for the given value of γ. Nonadaptive transmission clearly suffers a
large efficiency loss in exchange for its simplicity. However, if the channel varies rapidly and cannot be
accurately estimated, nonadaptive transmission may be the best alternative. Similar curves are obtained
for a target BER of 10−6, with roughly the same spectral efficiency loss relative to a 10−3 BER as was
exhibited in Figures 9.2 and 9.3.

9.6 Channel Estimation Error and Delay

We now relax our earlier assumptions about estimation error and delay to consider the case when the
estimation error ε = γ̂/γ 6= 1 and the delay τ = τf + τε 6= 0. We first consider the estimation error.
Suppose the transmitter adapts its power and rate relative to a target BER0 based on the channel estimate
γ̂ instead of the true value γ. From (9.7) the BER is then bounded by
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BER(γ, γ̂) ≤ .2 exp
[ −1.5γ
M(γ̂) − 1

S(γ̂)
S

]
= .2[5BER0]1/ε, (9.30)

where the second equality is obtained by substituting the optimal rate (9.8) and power (9.12) policies.
For ε = 1 (9.30) reduces to the target BER0. For ε 6= 1, ε > 1 yields an increase in BER, and ε < 1 yields
a decrease in BER.

The effect of estimation error on BER is given by

BER ≤
∫ ∞

0

∫ ∞

γ0
.2[5BER0]γ/γ̂p(γ, γ̂)dγdγ̂. (9.31)

The joint distribution p(γ, γ̂) will depend on the channel estimation technique. It has been shown recently
that when the channel is estimated using pilot symbols, the joint distribution of the signal envelope and its
estimate is bi-variate Rayleigh [42]. This joint distribution was then used in [42] to obtain the probability
of error for nonadaptive modulation with channel estimation errors. This analysis can be extended to
adaptive modulation using a similar methodology.

If the estimation error stays within some finite range then we can bound the effect of estimation
error using (9.30). We plot the BER increase as a function of a constant ε in Figure 9.10. This figure
shows that for a target BER of 10−3 the estimation error should be less than 1dB, and for a target BER
of 10−6 it should be less than .5dB. These values are pessimistic, since they assume a constant value
of estimation error. Even so, the estimation error can be kept within this range using the pilot-symbol
assisted estimation technique described in [25] with appropriate choice of parameters. When the channel
is underestimated (ε < 1) the BER decreases but there will also be some loss in spectral efficiency, since
the mean of the channel estimate γ̂ will differ from the true mean γ. The effect of this average power
estimation error is characterized in [44].
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Figure 9.10: Effect of Estimation Error on BER.

Suppose now that the channel is estimated perfectly (ε = 1) but the delay τ of the estimation and
feedback path is nonzero. Thus, at time t the transmitter will use the delayed version of the channel
estimate γ̂(t) = γ(t− τ) to adjust its power and rate. The resulting increase in BER is obtained in the
same manner as (9.30),

BER(γ(t), γ̂(t)) ≤ .2 exp
[ −1.5γ(t)
M(γ̂(t)) − 1

S(γ̂(t))
S

]
= .2[5BER0]γ(t)/γ(t−τ). (9.32)
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Figure 9.11: Effect of Normalized Delay (τfD) on BER.

Define ξ(t, τ) = γ(t)/γ(t− τ). Since γ(t) is stationary and ergodic, the distribution of ξ(t, τ) condi-
tioned on γ(t) depends only on τ and the value of γ = γ(t). We denote this distribution by pτ (ξ|γ). The
average BER is obtained by integrating over ξ and γ. Specifically, it is shown in [45] that

BER(τ) =
∫ ∞

γK

[∫ ∞

0
.2[5BER0]ξpτ (ξ|γ)dξ

]
p(γ)dγ, (9.33)

where γK is the cutoff level of the optimal policy and p(γ) is the fading distribution. The distribution
pτ (ξ|γ) will depend on the autocorrelation of the fading process. A closed-form expression for pτ (ξ|γ)
in Nakagami fading (of which Rayleigh fading is a special case), based on the autocorrelation function
(9.1), is derived in [45]. Using this distribution in (9.33) we obtain the average BER in Rayleigh fading
as a function of the delay parameter τ . A plot of (9.33) versus the normalized time delay τfD is shown
in Figure 9.11. From this figure we see that the total estimation and feedback path delay must be kept
to within .001/fD to keep the BER near its desired target.

9.7 Coding Issues and Capacity Revisited

A convolutional or block code can be applied to the uncoded bit stream before modulation to reduce the
BER. If adaptive modulation is applied to these coded bits, they will not suffer burst errors typically
exhibited on fading channels. Since the adaptive modulation keeps the BER constant under all fading
conditions by adjusting the transmit power and rate, the probability of error in a deep fade is the same
as with little or no fading, thereby eliminating error bursts and the need for an interleaver. Standard
decoding algorithms can be applied to the demodulated bits, although some buffering may be required.
Unfortunately, block and convolutional codes are not spectrally-efficiency, and would therefore reduce
some of the efficiency gains of the variable-rate scheme. A more effective coding scheme is to superimpose
a trellis code on top of the adaptive modulation. This superimposed coding technique is investigated
in Chapter 9.8, where we find that it is difficult to obtain more than 4 dB of coding gain using a
trellis code of reasonable complexity. Thus, the constant gap (9.9) between the spectral efficiency of
adaptive modulation and Shannon capacity, exhibited in Figures 9.2 and 9.3, cannot be fully closed.
This discrepancy between Shannon capacity and achievable rates arises from the lack of complexity and
implementation constraints inherent to Shannon theory. However, the derivation and general form of
the optimal power and rate adaptation for our MQAM scheme were identical to that of the Shannon
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capacity analysis. Thus, although we cannot reach the Shannon limit, the intuition and general strategy
of optimal adaptation in a Shannon sense was a useful guide in our adaptive modulation design.
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Chapter 10

Multiple Antenna Systems

Multiple antennas at the transmitter and/or receiver of a mobile system can increase data rates and per-
formance (multiple input multiple output systems) or reduce ISI and interference from other users (smart
antennas). In this chapter we treat both of these techniques and discuss the performance improvement
that can be achieved via each technique.

10.1 Multiple Input Multiple Output (MIMO) Systems

MIMO systems are defined as point-to-point communication links with multiple antennas at both the
transmitter and receiver. The use of multiple antennas at both transmitter and receiver clearly provide
enhanced performance over diversity systems where either the transmitter or receiver, but not both,
have multiple antennas. In particular, recent research has shown that MIMO systems can significantly
increase the data rates of wireless systems without increasing transmit power or bandwidth. The cost of
this increased rate is the added cost of deploying multiple antennas, the space requirements of these extra
antennas (especially on small handheld units), and the added complexity required for multi-dimensional
signal processing. Recent work in MIMO systems includes capacity of these systems under different
assumptions about channel knowledge, optimal coding and decoding for these systems, and transmission
strategies for uncoded systems.

10.1.1 The Narrowband Multiple Antenna System Model

A narrowband (flat-fading) point to point communication system employing n transmit and m receive
antennas is shown in Figure 10.1

This system can be represented by the following discrete time model:



y1
...
ym


 =



h11 · · · h1n
...

. . .
...

hm1 · · · hmn





x1
...
xn


+



N1
...
Nm




or simply as y = Hx + N . Here x represents the n-dimensional transmitted symbol, N is the m-
dimensional additive white Gaussian noise (AWGN) vector, and the channel matrix H consists of zero
mean (Rayleigh Fading) complex circular Gaussian random variables hij representing the channel gain
from transmit antenna j to receive antenna i. Without loss of generality we normalize the noise so
that the noise covariance matrix is an identity matrix. Note that although the dependence on time is
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Figure 10.1: MIMO Systems.

suppressed here, x, y, N and H are all stochastic processes. We assume that the receiver is able to
estimate the channel state H perfectly. So at each instant H is known at the receiver.

The transmit power constraint is given as
n∑
i=1

E[xix∗i ] = P,

or, equivalently, as
trace(E[xx†]) = P.

10.1.2 Transmit Precoding and Receiver Shaping

In general an R symbols/s input data stream can be split into r parallel, independent data streams,
producing r-tuples x̃ at a rate R/r symbols/s. The actual input to the antennas x is generated through
a linear transformation on x̃ as

x = Mx̃,

where M is an n × r fixed matrix. This operation is sometimes called transmit precoding. A similar
operation, called receiver shaping, can be performed at the receiver by multiplying the channel output
with a r × n matrix F , as shown in Figure 10.2.

y

... x=Mx

xx~

...

... ~y=Fy ...

~

Modulated
  Symbol
  Stream

y

~ ~y=    x+NH

Figure 10.2: Transmit Precoding and Receiver Shaping.

The relevance of these operations will become obvious in the next section. The overall system can
be described as follows:

ỹ = Fy

= FHx+ FN

= FHMx̃+ FN
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Note that the rank of the input covariance matrixQ = E[xx†] is equal to r, the number of independent
streams being simultaneously transmitted. For example if x = Mx where M is a constant vector, the
input covariance matrix Q = E[xx∗]MM

† has unit rank.
Optimal decoding of the received signal requires maximum likelihood demodulation. However, if

the modulated symbols are chosen from an alphabet of size |X |, then ML demodulation requires an
exhaustive search over |X |r possibilities for the input r-tuple. In general (for a non-trivial H), when
the transmitter does not know H this complexity cannot be reduced further. So the optimal decoding
complexity without the channel state information at the transmitter (CSIT) is exponential in the rank of
the input covariance matrix, which is the same as the number of independent streams being transmitted
simultaneously. This decoding complexity is typically prohibitive for even small numbers of antennas.
However, decoding complexity is significantly reduced if the channel can be measured at the receiver and
fed back to the transmitter, as we see in the next section.

10.1.3 Parallel Decomposition of the MIMO Channel

Let us consider the case of perfect Channel State Information at the Transmitter (CSIT). In other words,
both the transmitter and the receiver know H at each instant. Further let the instantaneous channel
matrix have a singular value decomposition (SVD)

H = UΛV, (10.1)

where U and V are unitary matrices (i.e. UU † = In and V V † = Im) and Λ is the diagonal matrix of
singular values of H. Now suppose the transmitter chooses M = V † and the receiver chooses F = U †.
The Multiple Input Multiple Output (MIMO) channel is then transformed into r (≤ min(m,n)) parallel
non-interfering Single Input Single Output (SISO) channels:

ỹ = U †UΛV V †x̃+ U †N

= Λx̃+ Ñ ,

where Ñ = +U †N . This parallel decomposition is shown in Figure 10.3.

x1

x2

x y

2y

1y

r r

~

~

~ ~

~

~

Figure 10.3: Parallel Decomposition of the MIMO Channel.

Since the SISO channels do not interfere the optimal (maximum likelihood) demodulation complexity
is now only r|X | instead of |X |r. Note that multiplication by a unitary matrix does not change the
distribution of white Gaussian noise, i.e. N and Ñ are identically distributed.
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10.1.4 MIMO Channel Capacity

The MIMO decomposition described above allows a simple characterization of the MIMO channel capacity
when both transmitter and receiver have perfect knowledge of the channel matrixH. The capacity formula
is [?]:

C = max
Q:Tr(Q)≤P

log |I +HQH†|, (10.2)

where the maximum is taken over all matrices Q that satisfy the average power constraint.
By substituting the matrix SVD (10.1) into (10.2) and using properties of unitary matrices yields

C = max
{Pi}:

∑
i
Pi≤P

∑
i

B log

(
1 +

λ2
iPi
N0B

)
, (10.3)

which is similar to the capacity formula in flat fading (4.9) or in frequency-selective fading with constant
channel gains (??). We therefore get a similar water-filling power allocation for the MIMO channel with
the channel gain given by the eigenvalues:

Pi
P

=

{
1
γ0

− 1
γi

γi ≥ γ0

0 γi < γ0
(10.4)

for some cutoff value γ0, where γi = λ2
iP/(N0B). The resulting capacity is then

C =
∑

i=1(γi≥γ0)
B log(γi/γ0). (10.5)

10.1.5 Beamforming

In this section we consider the case when the transmitter does not know the instantaneous channel.
It is no longer possible to transform the MIMO channel into non-interfering SISO channels. Since the
decoding complexity is exponential in r, we can keep the complexity low by keeping r small. Of particular
interest is the case where r = 1. A transmit strategy where the input covariance matrix has unit rank
is called beamforming. This corresponds to the precoding matrix being just a column vector M = c, the
beamforming vector, as shown in Figure 10.4

Spatial matched filtering yields a single SISO AWGN channel as follows.

ỹ =
c†H†

||c†H†||y

=
c†H†

||c†H†||Hcx+
c†H†

||c†H†||N

= ||Hc||x+ Ñ

where Ñ is zero-mean, unit-variance AWGN.
The optimal demodulation complexity with beamforming is of the order of |X |, the size of the

modulation symbol alphabet. Recall that c does not change with time. For a given choice of c and a
given channel matrix H the SNR becomes

SNR = c†H†HcE[xx∗]

Define the optimal choice of c as one that maximizes the average SNR (averaged over the distribution
of H). Note that optimality can also be defined so that the information theoretic capacity of this fading
channel is maximized. However, for now, we are interested in uncoded systems and therefore we choose
the average SNR as the optimality criterion.
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Figure 10.4: MIMO Channel with Beamforming.

Solving for the optimal beamforming vector

We wish to choose the beamforming vector c to maximize the average SNR given by

E[SNR] = Pc†E[H†H]c

subject to

c†c = 1.

We need this constraint in order to satisfy the transmit power constraint. But the solution to this
optimization problem is simply the unit norm principal eigenvector (the eigenvector corresponding to the
maximum eigenvalue) of the positive definite matrix E[H†H].

I.i.d. Fading

For i.i.d. fades, i.e. when the channel fades between any transmit-receive antenna pair are independent
and identically distributed, E[H†H] is a multiple of the identity matrix. Thus without loss of generality,
we could choose c = [1, 0, 0, · · · , 0]T . So for i.i.d. fades there is no gain from using multiple transmit
antennas. However the magnitude of the average received SNR is directly proportional to the number of
receive antennas. Hence multiple receive antennas improve average received SNR with i.i.d. fading.

Independent Fading

Each row of the channel matrix H is an n-dimensional random vector. Let the covariance matrix for the
ith row be denoted by Ki. For independent fades between all transmit-receive antenna pairs, the Ki are
all diagonal matrices. E[H†H] =

∑m
i=1Ki is also a diagonal matrix. Again the principal eigenvector is

c = [ 0, 0, · · · , 0, 1, 0, · · · , 0 ]T . This again corresponds to using just one transmit antenna alone. It can
easily be verified that the transmit antenna is the one that has the highest sum of average channel power
gains to all the receive antennas. Again, multiple receive antennas improve the received SNR.
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Correlated Fading

In general, for correlated fading, the principal eigenvector of E[H†H] may use all transmit antennas.
It is easy to verify this by constructing an example. We leave this as an exercise to the reader. So
for correlated fading, one does gain from using multiple transmit antennas as well as multiple receive
antennas.

10.2 Space-time codes

The key result discussed in the previous subsection motivates the study of channel codes, called space-
time codes to pursue the very high throughput predicted by information theory. As we saw earlier, if
the transmitter knows the channel it is possible to transform it into several parallel non-interfering SISO
channels and the codec technology for SISO channels is well established. However if the transmitter does
not know the instantaneous channel, inherently multi-dimensional codes are required. Codewords are
now long matrices instead of vectors. The optimal decoding complexity of these codewords is exponential
in the number of antennas. Designing these codewords itself is a complex problem and represents a vast
area of research in itself. Some of the approaches explored include treating the transmission from each
antenna as an independent user using conventional scalar codes in conjunction with multiuser detection
techniques at the receiver (layered space time codes). However most of these suboptimal approaches
suffer significant performance penalties.

10.3 Smart Antennas

Smart antennas generally consist of an antenna array combined with signal processing in both space and
time. The spatial processing introduces a new degree of freedom in the system design with enormous
potential to improve performance, including range extension, capacity enhancement, higher data rates,
and better BER performance [?].

The main impediments to high-performance wireless communications are the interference from other
users (cochannel interference) and the intersymbol interference (ISI) and signal fading caused by multi-
path. The cochannel interference limits the system capacity, defined as the number of users which can
be serviced by the system. However, since interference typically arrives at the receiver from different
directions, smart antennas can exploit these differences to reduce cochannel interference, thereby increas-
ing system capacity. The reflected multipath components of the transmitted signal also arrive at the
receiver from different directions, and spatial processing can be used to attenuate the multipath, thereby
reducing ISI and flat-fading. Since data rate and BER are degraded by these multipath effects, reduction
in multipath through spatial processing can lead to higher data rates and better BER performance.

The complexity of spatial domain processing along with the required real estate of an antenna
array make the use of smart antennas in small, lightweight, low-power handheld devices unlikely in
next-generation systems. However the base stations for these systems can use antenna arrays with space-
time processing at the transmitter to reduce cochannel interference and multipath, providing similar
performance advantages as smart antennas in the receiver. An excellent overview of smart antennas can
be found in [?].
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Appendix 10.A
Derivations of the Alternate Representations of the Gaussian Q-function
and its Square

A byproduct of Craig’s work on the probability of error for two-dimensional signal constellations [?] was
the alternate representation of the Gaussian Q-function given in (??). An extension of this representation
for the square of the Gaussian Q-function (??) was obtained by Simon and Divsalar [?]. In this appendix
we present another simple method of proving the alternate representations of the Gaussian Q-function
and its square.

A-1 Proof of Eqn. (??)

The proposed proof is an extension of the classical method to evaluate the Laplace-Gauss integral [?,
Eqn. (3.321.3)]:

J(a)
4
=
∫ ∞

0
e−a

2 x2
dx =

√
π

2 a
; a > 0. (10.6)

Let us consider the double integral
∫ ∞

0

∫ ∞

x
e−

u2+v2

2 du dv; x ≥ 0. (10.7)

Because of separability (10.7) can be rewritten as

∫ ∞

0
e−u

2/2 du︸ ︷︷ ︸
J(1/

√
2)

∫ ∞

x
e−v

2/2 dv︸ ︷︷ ︸√
2π Q(x)

= π Q(x), (10.8)

where we see that each integral in the LHS of (10.8) is a well-defined function. Further, transformation
to polar coordinates u = r cosφ and v = r sinφ (du dv = rdr dφ) may be carried out in (10.7) giving

∫ ∞

0

∫ ∞

x
e−

u2+v2

2 du dv =
∫ π/2

0

∫ ∞

x/ sinφ
e−r

2/2 rdr dφ

=
∫ π/2

0
exp

(
− x2

2 sin2 φ

)
dφ. (10.9)

Equating the RHS of (10.8) and (10.9) we obtain an alternate proof of the desired result (??). Note that
another purely algebraic proof of the result (??) which can be implied from the work of Pawula et al. [?]
is given in detail in [?, Appendix 4A].

A-2 Proof of Eqn. (??)

The proof presented in Appendix A-1 can be easily extended to arrive at the alternate representation of
Q2(·) given in (??). Let us now consider the following double integral

∫ ∞

x

∫ ∞

x
e−

u2+v2

2 du dv; x ≥ 0. (10.10)
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Again because of separability, (10.10) can be rewritten as∫ ∞

x
e−u

2/2 du︸ ︷︷ ︸√
2π Q(x)

∫ ∞

x
e−v

2/2 dv︸ ︷︷ ︸√
2π Q(x)

= 2 π Q2(x), (10.11)

where each integral in the LHS of (10.11) is the Gaussian Q-function multiplied by
√

2π. The transfor-
mation to polar coordinates u = r cosφ and v = r sinφ (du dv = rdr dφ) is carried out in (10.10) and by
symmetry the rectangular region of integration is divided into two equal triangular parts giving

∫ ∞

x

∫ ∞

x
e−

u2+v2

2 du dv = 2
∫ π/4

0

∫ ∞

x/ sinφ
e−r

2/2rdrdφ

= 2
∫ π/4

0
exp

(
− x2

2 sin2 φ

)
dφ. (10.12)

Equating (10.11) and (10.12) we obtain an alternate proof of the Simon-Divsalar result (??).

Appendix 10.B

Closed-Form Expressions for
∫ π/2
0

(
sin2 φ

sin2 φ+c

)m
dφ

The alternate representation of the Gaussian Q-function can also be used to find closed-form expressions
for integrals not tabulated in classical table of integrals such as [?, ?]. As an example we evaluate in this
appendix the integral Im(c) defined by

Im(c)
4
=
∫ π/2

0

(
sin2 φ

sin2 φ+ c

)m
dφ. (10.13)

To do so consider first the integral Jm(a, b) defined by

Jm(a, b)
4
=

am

Γ(m)

∫ +∞

0
e−attm−1Q(

√
bt)dt, m ≥ 0. (10.14)

This integral (10.14) has a known closed-form expression. When m is a positive real number the integral
Jm(a, b) is given by [?, Eqn. (A8)]

Jm(a, b)
4
=Jm(c) =

√
c/π

2(1 + c)m+1/2

Γ(m+ 1/2)
Γ(m+ 1) 2

F1

(
1,m+ 1/2;m+ 1;

1
1 + c

)
, (10.15)

where c = b/(2a) and 2F1(., .; .; .) denotes the the hypergeometric series (known also as the Gauss hyper-
geometric function). When m is a positive integer, the integral Jm(a, b) reduces to [?, Eqn. (7.4.15)], [?,
Eqn. (A13)]

Jm(a, b)
4
= Jm(c) = [P (c)]m

m−1∑
k=0

(
m− 1 + k

k

)
[1 − P (c)]k, (10.16)

where

P (x) =
1
2

(
1 −

√
x

1 + x

)
; x ≥ 0. (10.17)
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Using the alternate representation of the Gaussian Q-function (??) in (10.15), we obtain

Jm(a, b) =
am

Γ(m)

∫ ∞

0
e−attm−1

(
1
π

∫ π/2

0
exp

(
− b t

2 sin2 φ

)
dφ

)
dt. (10.18)

Interchanging the order of integration in (10.18), then using (??), gives

Jm(a, b)
4
= Jm(c) =

1
π

∫ π/2

0

(
sin2 φ

sin2 φ+ c

)m
dφ =

1
π
Im(c), (10.19)

which is the desired closed-form expression for Im(c). A similar equivalence can be made between
a result derived by Chennakeshu and Anderson [?] and the integrals

∫ (M−1) π/M
0

(
sin2 φ

sin2 φ+c

)m
dφ and∫ π/M

0

(
sin2 φ

sin2 φ+c

)m
dφ. Full details on these equivalences can be found in [?, Appendix 5A]. The reason

for mentioning these equivalences and the resulting closed-form expressions is that they can be used, for
example, to simplify calculations involving the performance BPSK and M -PSK with selection diversity
over correlated Nakagami-m fading channels [?].

Appendix 10.C
Key Result on Multiple Antenna System Capacity

While the idea of using multiple antennas at either the transmitter or the receiver to achieve diversity
gains or directional transmission has been around for a long time, the recent surge of interest in dual-
antenna-array systems (systems using multiple antennas at both the transmitter and receiver) is mostly
due to the following result by Foschini and Gans. They show that with n transmit and n receive antennas
and i.i.d. fades at different antenna elements, if the receiver has a perfect estimate of the channel the
mutual information grows linearly with n for a given fixed average transmitter power and bandwidth.
We provide some insight into the mathematical basis of this result.

Since the transmitter does not know the channel, we assume that equal power is transmitted from
each transmit antenna. The mutual information of the n-transmit, n-receive antenna system with equal
power allocation is:

In = log det[In×n +
P

n
HH†],

where the total transmit power is P . If we denote the eigenvalues of HH† as λi, 1 ≤ i ≤ n we can express
this as:

In =
n∑
i=1

log(1 +
P

n
λi).

Now comes the really interesting result from theory of large random matrices that says that the eigenvalues
of the random matrix HH† grow linearly in n, asymptotically as n→ ∞. This is true for any distribution
of the entries Hij , as long as the entries are i.i.d. with unit variance. Even more interestingly if λmax is
the largest eigenvalue of HH†, then the following statements are true with probability one,

lim
n→∞

λmax
n

= 4,
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and the random empirical distribution of the scaled eigenvalues (λi
n ) converges to the following determin-

istic density:

g(λ) =
1
π

√
1
λ
− 1

4
for 0 ≤ λ ≤ 4 and 0 otherwise.

The asymptotic behavior of the mutual information In follows directly from this result:

In
n

=
1
n

n∑
i=1

log(1 + P
λi
n

) →
∫ 4

0
log(1 + Pλ)g(λ)dλ.

Thus the mutual information scales linearly with n. Beyond its theoretical beauty this result is exciting
since the linear growth predicted by the asymptotic analysis is observed even for reasonably small number
of antennas. Also it was shown recently that even for correlated fades between antenna elements the
capacity growth rate is still linear in n, albeit smaller than under independent fading.

Recent work in [?, 12, ?] indicates that substantial capacity improvements can be made on MIMO
systems even with just channel correlation information available at the transmitter (this is not true for
SISO systems). Moreover, results in [?] indicate that in some scenarios a beamforming transmission
strategy achieves close to channel capacity. This is interesting since beamforming corresponds to scalar
coding with linear preprocessing at the transmit antenna array. Thus, the complexity involved is only
a fraction of the vector coding complexity for typical array sizes. These results are quite new and have
not yet been translated to practical transmission strategies for MIMO systems. However, these results
suggest that the capacity enhancement promised by MIMO systems can be achieved in real systems with
techniques of reasonable complexity. Practical transmission strategies for MIMO channels generally fall
into two categories: space-time coding and space-time signal processing. In space-time coding the codes
are designed to take advantage of the extra degrees of freedom in the space domain [?, ?]. Space-time
processing focuses on estimation, equalization, and filtering techniques to accurately estimate a signal
transmitted over a MIMO channel [13, 14].
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Chapter 11

Equalization

We have seen in Chapter 5 that delay spread causes intersymbol interference (ISI), which in turn produces
an irreducible error floor in most digital modulation techniques. There are several techniques we can use
as countermeasures to delay spread. These techniques fall in two broad categories: signal processing
and antenna solutions. In a broad sense, equalization defines any signal processing technique used at
the receiver to alleviate the ISI problem caused by delay spread. Signal processing can also be used at
the transmitter to make the signal less susceptible to delay spread: spread spectrum and multicarrier
modulation fall in this category of transmitter signal processing techniques. In this chapter we focus
on equalization. Multicarrier modulation and spread spectrum are the topics of Chapters 11 and 12,
respectively. Antenna solutions can also be used to change the propagation environment such that
delay spread is reduced or eliminated: techniques that fall in this category include distributed antennas,
directive antennas, and adaptive antennas.

An irreducible error floor arises when the channel symbol time Ts is not much larger than the average
or rms delay spread (µTm or σTm). For example, cordless phones typically operate indoors, where the
delay spread is small. Since voice is also a relative low-rate application, equalization is generally not
used in cordless phones. However, in digital cellular systems which operate outdoors, σTm ≈ Ts, so
equalization is typically used. Clearly higher data rate applications are even more sensitive to delay
spread, and generally require high-performance equalizers. In fact, mitigating the impact of delay spread
is the most challenging hurdle for high-speed wireless data systems.

The goal of equalization is to mitigate the effects of ISI. However, this goal must be balanced so
that in the process of removing ISI, the noise power in the received signal is not enhanced. A simple
example, shown in Figure 11.1, illustrates the pitfalls of removing ISI without considering this effect on
noise. Consider a signal s(t) that is passed through a channel with frequency response H(f). At the
receiver front end white Gaussian noise n(t) is added to the signal, so the signal input to the receiver is
W (f) = S(f)H(f)+N(f), where N(f) has power spectral density N0. If the bandwidth of s(t) is B then
the noise power within the signal bandwidth of interest is N0B. Suppose we wish to equalize the received
signal so as to completely remove the ISI introduced by the channel. This is easily done by introducing
an analog equalizer in the receiver defined by

Heq(f) = 1/H(f). (11.1)

The receiver signal W (f) after passing through this equalizer becomes [S(f)H(f) + N(f)]Heq(f) =
S(f) +N ′(f), where N ′(f) is colored Gaussian noise with power spectral density N0/|H(f)|2. Thus, all
ISI has been removed from the transmitted signal S(f).

However, if H(f) has a spectral null (H(f0) = 0 for some f0) at any frequency within the bandwidth
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Figure 11.1: Analog Equalizer Illustrating Noise Enhancement.

of s(t), then the power of the noise N ′(f) is infinite. Even without a spectral null, if some frequencies
in H(f) are greatly attenuated, the equalizer Heq(f) = 1/H(f) will greatly enhance the noise power at
those frequencies. In this case even though the ISI effects are removed, the equalized system will perform
poorly due to its greatly reduced SNR. Thus, the true goal of equalization is to balance mitigation of
the effects of ISI with maximizing the SNR of the post-equalization signal. We will discuss different
approaches to achieve this balance in more detail below.

For an equalizer to mitigate the ISI introduced by the channel, it must have an estimate of the channel
impulse or frequency response. Since the wireless channel varies over time, the equalizer must learn the
frequency response of the channel (training) and then update its estimate of the frequency response as the
channel changes (tracking). The process of equalizer training and tracking is often referred to as adaptive
equalization, since the equalizer adapts to the changing channel. In general, the training is done by
sending a fixed-length known bit sequence over the channel. The equalizer at the receiver uses the known
training sequence to adapt its filter coefficients to match the channel frequency response. Specifically,
the equalizer filter coefficients are updated to minimize the error between the actual channel output and
the channel output resulting from the known training sequence transmitted through the estimate of the
channel frequency response. The training process assumes that the channel is relatively constant over the
length of the training sequence, otherwise equalization should not be used, since the channel cannot be
estimated properly. After training, the equalizer coefficients are matched to the channel, and data can
be transmitted. During transmission of user data, an adaptive algorithm is used on the received data to
continually update the equalizer coefficients.

If the channel changes relatively slowly, adaptive algorithms are usually sufficient to track the chan-
nel changes. However, if the channel is changing quickly, the training sequence may be transmitted
periodically to insure that the equalizer coefficients do not drift significantly from their optimal values.
It is clearly desirable to avoid periodic retraining, since no useful data is sent during the training interval.
When periodic retraining is necessary, the length of the training sequence determines how much band-
width is wasted on training. The length of the training sequence depends on the equalizer structure and
its tap update algorithm, as well as the channel delay spread and coherence time. The convergence rate
of several common equalizer algorithms are given below.

An equalizer can be implemented at baseband, RF, or IF. Most equalizers are implemented at
baseband using DSP, since such filters are easily tuneable and cheap to implement.

11.1 Equalizer Types

Equalization techniques fall into two broad categories: linear and nonlinear. The linear techniques are
generally the simplest to implement and to understand conceptually. However, linear equalization tech-
niques typically suffer from noise enhancement on frequency-selective fading channels, and are therefore
not used in most wireless applications. Among nonlinear equalization techniques, decision-feedback equal-
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ization (DFE) is the most common, since it is fairly simple to implement and does not suffer from noise
enhancement. However, on channels with low SNR, the DFE suffers from error propagation when bits
are decoded in error, leading to poor performance. The optimal equalization technique to use is max-
imum likelihood sequence estimation (MLSE). Unfortunately, the complexity of this technique grows
exponentially with memory length, and is therefore impractical on most channels of interest. However,
the performance of the MLSE is often used as an upper bound on performance for other equalization tech-
niques. Figure 11.2 summarizes the different equalizer types, along with their corresponding structures
and tap updating algorithms, which are discussed in more detail in [1].

Equalizers can also be categorized as symbol-by-symbol (SBS) or sequence estimators (SE). SBS
equalizers remove ISI from each symbol and then detect each symbol individually. All linear equalizers
in Figure 11.2 as well as the DFE are SBS equalizers. SE equalizers detect sequences of symbols, so the
effect of ISI is part of the estimation process. Maximum likelihood sequence estimation (MLSE) is the
optimal form of sequence detection, but is highly complex.

Linear

Transversal Lattice

Equalizers

       LMS
       RLS
     Fast RLS
Square−Root RLS

Gradient RLS

Nonlinear

DFE MLSE

Transversal Lattice Transversal
   Channel
  Estimator

       LMS
       RLS
     Fast RLS
Square−Root RLS

Gradient RLS

       LMS
       RLS
     Fast RLS
Square−Root RLS

Types

Structures

Algorithms

Figure 11.2: Equalizer Types, Structures, and Algorithms.

11.2 Folded Spectrum and ISI-Free Transmission

Figure 11.3 shows a block diagram of an end-to-end system using equalization. The input symbol dk
is passed through a pulse shape filter p(t) which is then transmitted over the ISI channel with impulse
response c(t). We define the equivalent channel impulse response h(t) = p(t) ∗ c(t), and the transmitted
signal is thus given by d(t) ∗ p(t) ∗ c(t) for d(t) =

∑
k dkδ(t− kT ) the train of information symbols. The
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pulse shape p(t) improves the spectral properties of the transmitted signal, as described in Chapter 5.5.
This pulse shape is under the control of the system designer, whereas the channel c(t) is introduced by
nature and is outside the designer’s control.

At the receiver front end white Gaussian noise n(t) is added to the received signal for a resulting
signal w(t). The first operation on the received signal w(t) is to pass the signal through an analog matched
filter g∗(−t). The purpose of the matched filter is to maximize the SNR of the signal before sampling
and subsequent processing1. Recall from Chapter 5.1 that in AWGN the SNR of the received signal is
maximized using a matched filter that is matched to the pulse shape. This result also indicates that for
the system shown in Figure 11.3, SNR is maximized by passing w(t) through a filter matched to h(t), so
ideally we would have g(t) = h(t). However, since the channel impulse response c(t) is time-varying and
sometimes unknown, and analog filters are not easily tuneable, it is not possible to have g∗(t) = h∗(−t).
Thus, part of the art of equalizer design is to chose g∗(t) to get good performance. The fact that g∗(t)
cannot be matched to h(t) can result in significant performance degradation and also makes the receiver
extremely sensitive to timing error. These problems are somewhat mitigated by oversampling w(t) at a
rate much faster than the symbol rate: this process is called fractionally-spaced equalization [1]

The output of the matched filter is sampled and then passed through a digital equalizer. Digital
implementation of the equalizer is highly desirable, since digital filters are cheap, easy to implement,
and easily tuneable to adjust for changing channel conditions. Let f(t) denote the combined baseband
impulse response of the transmitter, channel, and matched filter:

f(t) = p(t) ∗ c(t) ∗ g∗(−t). (11.2)

Then the matched filter output is given by

y(t) = d(t) ∗ f(t) + ng(t) =
∑

dkf(t− kT ) + ng(t), (11.3)

where ng(t) = n(t) ∗ g∗(−t) is the equivalent baseband noise at the equalizer input and T is the symbol
time. If we sample y(t) every T seconds we obtain yn = y(nT ) as

yn =
∞∑

k=−∞
dkf(nT − kT ) + ng(nT )

4
=

∞∑
k=−∞

dkfn−k + νn

= dnf0 +
∑
k 6=n

dkfn−k + νn. (11.4)

where the first term in (11.4) is the desired data bit, the second term is the ISI, and the third term is the
sampled baseband noise. We see from (11.4) that we get zero ISI if fn−k = 0 for k 6= n, i.e. fk = δkf0.
In this case (11.4) reduces to yn = dnf0 + νn.

We now show that the condition for ISI-free transmission, fk = δkf0, is satisfied if and only if

FΣ(f)
4
=

1
T

∞∑
n=−∞

F (f +
n

T
) = f0. (11.5)

The function FΣ(f) is often called the folded spectrum, and FΣ(f) = f0 implies that the folded spectrum
is flat.

1While the matched filter could be more efficiently implemented digitally, the analog implementation before the sampler
allows for a smaller dynamic range in the sampler, which significantly reduces cost.
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Figure 11.3: End-to-End System.

To show this equivalence, first note that

fk =
∫ ∞

−∞
F (f)ej2πkfTdf

=
∞∑

n=−∞

∫ (2n+1)/2T

(2n−1)/2T
F (f)ej2πkfTdf

=
∞∑

n=−∞

∫ 1/2T

−1/2T
F

(
f ′ +

n

T

)
ej2πk(f

′+n/T )Tdf ′

=
∫ 1/2T

−1/2T
ej2πkfT

[ ∞∑
n=−∞

F

(
f +

n

T

)]
df. (11.6)

We first show that a flat folded spectrum implies that fk = δkf0. Suppose (11.5) is true. Then by (11.6),

fk = T

∫ 1/2T

−1/2T
e−j2πkfTf0Tdf =

sinπk
πk

f0 = δkf0, (11.7)

which is the desired result. We now show that fk = δkf0 implies a flat folded spectrum. If fk = δkf0

then by (11.6),

fk = T

∫ 1/2T

−1/2T
FΣ(f)ej2πkfTdf. (11.8)

So fk is the Fourier transform of FΣ(f). Therefore, if fk = δkf0, FΣ(f) = f0.

11.3 Linear Equalizers

If FΣ(f) is not flat, we can use the equalizer Heq(z) in Fig. 11.3 to reduce ISI. In this section we assume
a linear equalizer:

Heq(z) = w0 + w1z
−1 + . . . wNz

−N . (11.9)

The length of the equalizer N is typically dictated by implementation considerations, since a large N
usually entails higher complexity. For a given equalizer size N the only task for the equalizer design is
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to determine the equalizer coefficients {wi}Ni=0. Recall that our performance metric in wireless systems
is probability of error (or outage probability), so the optimal choice of equalizer coefficients would be
the coefficients that minimize probability of error. Unfortunately it is extremely difficult to optimize
the {wi}s with respect to this criterion. Since we cannot directly optimize for our desired performance
metric, we must instead use an indirect optimization that balances ISI mitigation with the prevention of
noise enhancement, as discussed relative to the simple analog example above. We now describe two linear
equalizers: the Zero Forcing (ZF) equalizer and the Minimum Mean Square Error (MMSE) equalizer.
The former equalizer cancels all ISI, but can lead to considerable noise enhancement. The latter technique
minimizes the expected mean squared error between the transmitted symbol and the symbol detected at
the equalizer output, thereby providing a better balance between ISI mitigation and noise enhancement.
Because of this more favorable balance, MMSE equalizers tend to have better BER performance than
systems using the ZF algorithm.

11.3.1 Zero Forcing (ZF) Equalizers

The samples {yn} input to the equalizer can be represented based on the discretized combined system
response f(t) = h(t) ∗ g∗(−t) as

Y (z) = D(z)F (z) +N(z), (11.10)

where N(z) is the power spectrum of the white noise after passing through the matched filter G∗(1/z∗)
and the equalizer Heq(z) and

F (z) = H(z)G∗(1/z∗) =
∑
n

f(nT )z−n. (11.11)

The zero-forcing equalizer removes all ISI introduced in the combined response f(t). From (11.10) we see
that the equalizer to accomplish this is given by

HZF (z) =
1

F (z)
. (11.12)

This is the discrete-time equivalent to the analog equalizer (11.1) described above, and it suffers from the
same noise enhancement properties. Specifically, the power spectrum N(z) is given by

N(z) = Ng(z)|HZF (z)|2 =
N0|G∗(1/z∗)|2

|F (z)|2 =
N0|G∗(1/z∗)|2

|H(z)|2|G∗(1/z∗)|2 =
N0

|H(z)|2 . (11.13)

We see from (11.13) that if the channel H(z) is sharply attenuated at any frequency within the bandwidth
of interest, as is common on frequency-selective fading channels, the noise power will be significantly
increased. This motivates an equalizer design that better optimizes between ISI mitigation and noise
enhancement. One such equalizer is the MMSE equalizer, which we describe in the next section.

The ZF equalizer defined byHZF (z) = 1/F (z) may not be implementable as a finite impulse response
(FIR) filter. Specifically, it may not be possible to find a finite set of coefficients w0, . . . , wN such that

w0 + w1z
−1 + . . .+ wNz

−N =
1

F (z)
. (11.14)

In this case we find the set of coefficients {wi} that best approximates the zero-forcing equalizer. Note
that this is not straightforward since the approximation must be valid for all values of z. There are
many ways we can make this approximation. One technique is to represent HZF (z) as an infinite impulse
response (IIR) filter, 1/F (z) =

∑∞
i=−∞ ciz

−i and then set wi = ci. Another technique is to take wi = ci
where {ci} is the inverse z-transform of 1/F (z) (it can be shown that this minimizes the L2 norm of

1
F (z) − (w0 + w1z

−1 + . . .+ wNz
−N ) at z = ejω). Other approximations are also used in practice.
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11.3.2 Minimum Mean Square Error (MMSE) Equalizer

In MMSE equalization the goal of the equalizer design is to minimize the average mean square error
(MSE) between the transmitted symbol dk and its estimate d̂k at the output of the equalizer, i.e we want
to find the {wi}s to minimize E[dk− d̂k]2. Since we are dealing with linear equalizers, the equalizer output
d̂k is a linear combination of the input samples yk:

d̂k =
N∑
i=0

wiyk−i. (11.15)

As such, finding the optimal filter coefficients {wi} becomes a standard problem in linear estimation. In
fact, if the noise input to the equalizer is white, this is a standard Weiner filtering problem. The problem
is that because of the matched filter g∗(−t) at the receiver front end, the noise input to the equalizer is not
white but colored with power spectrum N0|G∗(1/z∗)|2. Therefore, in order to apply known techniques for
optimal linear estimation, we expand the filter Heq(z) into two components, a noise whitening component
1/G∗(1/z∗) and an ISI removal component Ĥeq(z), as shown in Figure 11.4.

n(t)

 k     d  
Pulse Shape
    p(t)

Equivalent Channel
         h(t)

w(t) y(t)
Matched
  Filter
 g*(−t)

ISI Channel
     c(t)

y
n d

^
k    Noise 

  Whitener
 1/G*(1/z*)

eq
Ĥ   (z)

eq
H   (z)

n
v

Figure 11.4: MMSE Equalizer with Noise Whitening Filter.

The purpose of the noise whitening filter, as indicated by the name, is to whiten the noise such that
the noise component output from this filter has a constant power spectrum. Since the noise input to this
receiver has power spectrum N0|G∗(1/z∗)|2, the appropriate noise whitening filter is 1/G∗(1/z∗) so that
the noise power spectrum at the output of the noise whitening filter is N0|G∗(1/z∗)|2/|G∗(1/z∗)|2 = N0.
Note that the filter 1/G∗(1/z∗) is not the only filter that will whiten the noise, and another noise whitening
filter with more desirable properties (like stability) may be chosen. It might seem odd at first to introduce
the matched filter g∗(−t) at the receiver front end only to cancel its effect in the equalizer. Recall, however,
that the matched filter is meant to maximize the SNR at the A/D input. By removing the effect of this
matched filter through noise whitening we merely simplify the design of Ĥeq(z) to minimize MSE. In fact
if the noise whitening filter does not yield optimal performance then its effect would be cancelled by the
Ĥeq(z) filter design, as we will see below in the case of IIR MMSE equalizers.

We assume the filter Ĥeq(z), with input vn, is a linear filter with N taps:

Ĥeq(z) = w0 + w1z
−1 + . . .+ wNz

−N . (11.16)
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Our goal is to design the filter coefficients {wi} so as to minimize E[dk− d̂k]2. This is the same goal as for
the total filter Heq(z), we’ve just added the noise whitening filter to make solving for these coefficients
simpler. We define the following column vectors v = (vk,vk−1, . . . ,vk−N) and w = (w0, . . . ,wN). Then
the output of the filter Ĥeq(z) is

d̂k = wTv = vTw. (11.17)

Thus, we want to minimize the mean square error

J = E[dn − d̂n]2 = E
[
wTvvHw∗ − 2<{vHw∗dn} + |dn|2

]
, (11.18)

where for a vector x = [x1, . . . ,xN], x∗ = [x∗
1, . . . ,x

∗
N], and xH = [x∗

1, . . . ,x
∗
N]T. Define Mv = E[vvH]

and vd = E[(vHdn]. The matrix Mv is an N × N Hermitian matrix and vd is a length N row vector.
Assume E|dk|2 = 1. Then the MSE J is

J = wTMvw∗ − 2<{vdw∗} + 1. (11.19)

We obtain the optimal tap vector w by setting the gradient 5wJ = 0 and solving for w. From
(11.19) it can be shown that [5, 3]

5wJ =
(
∂J

∂w0
, . . . ,

∂J

∂wN

)
= 2wTMv − 2vd. (11.20)

Setting this to zero yields wTMv = vd or, equivalently, that the optimal tap weights are given by

wopt =
(
MT

v

)−1
vH

d . (11.21)

Note that solving for wopt requires a matrix inversion with respect to the filter inputs. Thus, the
complexity of this computation is quite high, typically on the order of N2 to N3 operations. Substituting
in these optimal tap weights we obtain the minimum mean square error as

Jmin = 1 − vdM−1
v vH

d . (11.22)

For an infinite length equalizer, v = (vn+∞, . . . ,vn,vn−∞) and w = (w−∞, . . . ,w0, . . . ,w∞). Then
wTMv = vd can be written as

∞∑
i=−∞

wi(fj−i +N0)δij = g∗−j, −∞ ≤ j ≤ ∞. (11.23)

Taking z transforms and noting that Ĥeq(z) is the z transform of the filter coefficients w yields

Ĥeq(z)(F (z) +N0) = G∗(1/z∗). (11.24)

Solving for Ĥeq(z) yields

Ĥeq(z) =
G∗(1/z∗)
F (z) +N0

. (11.25)

Since the MMSE equalizer consists of the noise whitening filter 1/G∗(1/z∗) plus the ISI removal compo-
nent Ĥeq(z), we get that the full MMSE equalizer, when it is not restricted to be finite length, becomes

Heq(z) =
Ĥeq(z)
G∗(1/z∗)

=
1

F (z) +N0
. (11.26)
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There are three interesting things to notice about this result. First of all, the ideal infinite length MMSE
equalizer cancels out the noise whitening filter. Second, this infinite length equalizer is identical to the ZF
filter except for the noise term N0, so in the absence of noise the two equalizers are equivalent. Finally,
this ideal equalizer design clearly shows a balance between inverting the channel and noise enhancement:
if F (z) is highly attenuated at some frequency the noise term N0 in the denominator prevents the noise
from being significantly enhanced by the equalizer. Yet at frequencies where the noise power spectral
density N0 is small compared to the composite channel F (z), the equalizer effectively inverts F (z).

For the equalizer (11.26) it can be shown [3] that the minimum MSE (11.22) can be expressed in
terms of the folded spectrum FΣ(f) as

Jmin = T

∫ .5/T

−.5/T
N0

FΣ(f) +N0
df. (11.27)

This expression for MMSE has several interesting properties. First it is readily seen, as expected, that
0 ≤ Jmin = E[dk − d̂k]2 ≤ 1. In addition, Jmin = 0 in the absence of noise (N0 = 0) as long as FΣ(f) 6= 0
within the signal bandwidth of interest. Also, as expected, Jmin = 1 if N0 = ∞.

11.4 Maximum Likelihood Sequence Estimation

Maximum-likelihood sequence estimation (MLSE) avoids the problem of noise enhancement since it
doesn’t use an equalizing filter: instead it estimates the sequence of transmitted symbols [4]. The struc-
ture of the MLSE is the same as in Figure 11.3 except that the equalizer Heq(z) and decision device
are replaced by the MLSE algorithm. Given the channel response h(t), the MLSE algorithm chooses the
input sequence {dk} that maximizes the likelihood of the received signal w(t). We now investigate this
algorithm in more detail.

Using a Gram-Schmidt orthonormalization procedure we can express w(t) on a time interval [0, LT ]
as

w(t) =
N∑
n=1

wnφn(t), (11.28)

where {φn(t)} form a complete set of orthonormal basis functions. The number N of functions in this set
is a function of the channel memory, since w(t) on [0, LT ] depends on d0, . . . , dL. With this expansion
we have

wn =
∞∑

k=−∞
dkhnk + nn =

L∑
k=0

dkhnk + nn, (11.29)

where

hnk =
∫ T

0
h(t− kT )φ∗n(t)dt (11.30)

and

nn =
∫ T

0
n(t)φ∗n(t)dt. (11.31)

The nn are complex Gaussian random variables with mean zero and covariance .5E[n∗nnm]×N0δ(n−
m). Thus, WN = (w1, . . . , wN ) has a multivariate Gaussian distribution

p(WN |dL, h(t)) = ΠN
n=1

1
πNo

exp


− 1

N0

∣∣∣∣∣wn −
L∑
k=0

dkhnk

∣∣∣∣∣
2

 . (11.32)
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Given a received signal w(t) or, equivalently, WN , the MLSE decodes this as the symbol sequence dL

that maximizes the likelihood function p(WN |dL, h(t)) (or the log of this function) that WN is received
given that dL was transmitted. That is, the MLSE outputs the sequence

d̂L = arg max [log p(WN |dL, h(t))]

= arg max

[
−

N∑
n=1

|wn −
∑
k

dkhnk|2
]

= arg max

[
−

N∑
n=1

|wn|2 +
N∑
n=1

(
w∗
n

∑
k

dkhnk + wn
∑
k

d∗kh
∗
nk

)
−

N∑
n=1

(∑
k

dkhnk

)(∑
m

d∗mh
∗
nm

)]

= arg max

[
2<
{∑

k

d∗k
N∑
n=1

wnh
∗
nk

}
−
∑
k

∑
m

dkd
∗
m

N∑
n=1

hnkh
∗
nm

]
. (11.33)

Note that
N∑
n=1

wnh
∗
nk =

∫ ∞

−∞
w(τ)h∗(τ − nT )dτ = yn, (11.34)

and
N∑
n=1

hnkh
∗
nm =

∫ ∞

−∞
h(τ − kT )h∗(τ −mT )dτ = fkm. (11.35)

Combining (11.33), (11.34), and (11.35) we have that

d̂L = arg max

[
2<
{∑

k

d∗kyk

}
−
∑
k

∑
m

dkd
∗
mfkm

]
. (11.36)

We see from this equation that the MLSE output depends only on the sampler output {yk} and the
channel parameters fnk = f(nT − kT ) where f(t) = h(t) ∗ h∗(−t). Since the derivation of the MLSE is
based on the channel output only, our derivation implies that the receiver matched filter in Figure 11.1 is
optimal for MLSE detection (typically the matched filter is optimal for detecting signals in AWGN, but
this derivation shows that it is also optimal for detecting signals in the presence of ISI if MLSE is used).

The MLSE algorithm is also used in ML decoding, and the Viterbi algorithm can be used for MLSE.
However, the complexity of this equalization technique grows exponentially with the channel delay spread.
A nonlinear technique with significantly less complexity is the decision-feedback decoder, or DFE.

11.5 Decision-Feedback Equalization

The DFE consists of a feedforward filter with the received sequence as input (similar to the linear
equalizer) followed by a feedback filter with the previously detected sequence as input. The DFE structure
is shown in Figure 11.5. Effectively, the DFE determines the ISI contribution from the detected symbols
{dn} by passing them through the feedback filter. The resulting ISI is then subtracted from the incoming
symbols. Since the feedback filter D(z) in Figure 11.5 sits in a feedback loop, it must be strictly causal,
or else the system is unstable. The feedback filter of the DFE does not suffer from noise enhancement
because it estimates the channel frequency response rather than its inverse. For channels with deep
spectral nulls, DFEs generally perform much better than linear equalizers.

DFEs exhibit feedback errors if ˆ̂
dn 6= dn, since the ISI subtracted by the feedback path is not the

true ISI corresponding to dn. This error therefore propagates to later bit decisions. Moreover, this error
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Figure 11.5: Decision-Feedback Equalizer Structure.

propagation cannot be improved through channel coding, since the feedback path operates on coded
channel symbols before decoding. That is because the ISI must be subtracted immediately, which doesn’t
allow for any decoding delay. The error propagation therefore seriously degrades performance on channels
with low SNR. DFEs use versions of the LMS and RLS algorithms to update the filter coefficients of C(z)
and D(z). Details of these algorithms and their relative performance for DFEs can be found in [1].

11.6 Equalizer Training and Tracking

All of the equalizers described so far are designed based on a known value of the composite channel
response h(t) = p(t) ∗ c(t). Since the channel c(t) in generally not known when the receiver is designed,
the equalizer must be tunable so it can adjust to different values of c(t). Moreover, since in wireless
channels c(t) = c(τ, t) will change over time, the system must periodically estimate the channel c(t) and
update the equalizer coefficients accordingly. This process is called equalizer training.

During training the N coefficients of the equalizer are updated at time k based on a known training
sequence [dk−M , . . . , dk] that has been sent over the channel. The length M of the training sequence
depends on the number of equalizer coefficients that must be determined and the convergence speed of
the training algorithm. Note that the equalizer must be retrained when the channel decorrelates, i.e. at
least every Tc seconds where Tc is the channel coherence time. Thus, if the training algorithm is slow
relative to the channel coherence time then the channel may change before the equalizer can learn the
channel. Specifically, if MT > Tc then the channel will decorrelate before the equalizer has finished
training. In this case equalization is not an effective countermeasure for ISI, and some other technique
(e.g. multicarrier modulation or CDMA) is needed.

Let {d̂k} denote the bit decisions output from the equalizer given a transmitted training sequence
{dk}. Our goal is to update the N equalizer coefficients at time k+ 1 based on the training sequence we
have received up to time k. We will denote these updated coefficients as {w0(k+ 1), . . . , wN (k+ 1)}. We
will use the MMSE as our criterion to update these coefficients, i.e. we will chose {w0(k+1), . . . , wN (k+1)}
as the coefficients that minimize the MSE between dk and d̂k. Recall that d̂k = w0(k)yk + w1(k)yk−1 +
. . .+wN (k)yk−N , where yk is the output of the sampler in Figure 11.1 at time k with the known training
sequence as input. The {w0(k + 1), . . . , wN (k + 1)} that minimize MSE are obtained via a Weiner filter
[5, 3]. Specifically,

w(k + 1) = {w0(k + 1), . . . ,wN(k + 1)} = R−1p, (11.37)
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where p = dk[ykyk−1 . . .yk−N]T and

R =




|yk|2 yky
∗
k−1 . . . yky

∗
k−N

yk−1y
∗
k |yk−1|2 . . . yk−1y

∗
k−N

...
. . . . . .

...
yk−Ny∗k . . . . . . |yk−N |2


 . (11.38)

Note that the optimal tap updates in this case requires a matrix inversion, which requires N2 − N3

multiply operations on each iteration (each bit time T ). However, the convergence of this algorithm is
very fast: it often converges in around N bit times for N the number of equalizer tap weights.

If complexity is an issue then the large number of multiply operations needed to do MMSE training
can be prohibitive. A simpler technique is the least mean square (LMS) algorithm [5]. In this algorithm
the tap weight vector w(k + 1) is updated linearly as

w(k + 1) = w(k) + ∆εk[y∗
k . . .y

∗
k−N], (11.39)

where εk = dk − d̂k is the error between the bit decisions and the training sequence and ∆ is the step
size of the algorithm, which is a parameter that can be chosen. The choice of ∆ dictates the convergence
speed and stability of the algorithm. For small values of ∆ convergence is very slow, at it takes many
more than N bits for the algorithm to converge to the proper equalizer coefficients. However, if ∆ is
chosen to be large then the algorithm can go unstable, basically skipping over the desired tap weights at
every iteration. Thus, for good performance of the LMS algorithm ∆ is typically small and convergence
is typically slow. However, the LMS algorithm exhibits significantly reduced complexity compared to
the MMSE algorithm since the tap updates only require approximately 2N + 1 multiply operations per
iteration. Thus, the complexity is linear in the number of tap weights. Other algorithms, such as the
root-least-squares (RLS), Square-root-least-squares, and Fast Kalman provide various tradeoffs in terms
of complexity and performance that lie between the two extremes of the LMS algorithm (slow convergence
but low complexity) and the MMSE algorithm (fast convergence but very high complexity). A description
of these other algorithms is given in [1]. The table below summarizes the specific number of multiply
operations and the relative convergence rate of all these algorithms.

Note that the bit decisions d̂k output from the equalizer are typically passed through a threshold
detector to round the decision to the nearest bit value2. The resulting roundoff error can be used to
adjust the equalizer coefficients during data transmission. This is called equalizer tracking. Tracking is
based on the premise that if the roundoff error is nonzero then the equalizer is not perfectly trained, and
the roundoff error can be used to adjust the channel estimate inherent in the equalizer. The procedure
works as follows. The equalizer output bits d̂k and threshold detector output bits ˆ̂

dk are used to adjust an
estimate of the baseband equivalent composite channel H(z). In particular, the coefficients of H(z) are

adjusted to minimize the MSE between d̂k and ˆ̂
dk, using the same MMSE procedures described earlier

in this chapter. The updated version of H(z) is then taken to equal the composite channel and used to
update the equalizer coefficients accordingly. More details can be found in [5, 3].

A summary of the training and tracking characteristics for the different algorithms as a function of
the number of taps N is given in the following table.

2A bit value of zero or one corresponds to binary decisions. For higher level modulations the threshold detector rounds
to the nearest constellation point.

320

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


Algorithm # of multiply operations Complexity Convergence Tracking
LMS 2N + 1 Low Slow (>> NTs) Poor

MMSE N2-N3 Very High Fast (≈ NTs) Good
RLS 2.5N2 + 4.5N High Fast Good

Fast Kalman 20N + 5 Fairly Low Fast Good
Square Root RLS 1.5N2 + 6.5N High Fast Good

Note that the Fast Kalman and Square Root RLS may be unstable in their convergence and tracking,
which is the price paid for their fast convergence with relatively low complexity.
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Chapter 12

Multicarrier Modulation

The basic idea of multicarrier modulation is to divide the transmitted bitstream into many different sub-
streams and send these over many different subchannels. Typically the subchannels are orthogonal under
ideal propagation conditions, in which case multicarrier modulation is often referred to as orthogonal
frequency division multiplexing (OFDM). The data rate on each of the subchannels is much less than
the total data rate, and the corresponding subchannel bandwidth is much less than the total system
bandwidth. The number of substreams is chosen to insure that each subchannel has a bandwidth less
than the coherence bandwidth of the channel, so the subchannels experience relatively flat fading. Thus,
the ISI on each subchannel is small. Moreover, in the discrete implementation of OFDM, often called
discrete multitone (DMT), the ISI can be completely eliminated through the use of a cyclic prefix. The
subchannels in OFDM need not be contiguous, so a large continuous block of spectrum is not needed for
high rate multicarrier communications.

Over the past few years, there has been increasing interest in multicarrier modulation for a variety of
applications. However, multicarrier modulation is not a new technique: it was first used for military HF
radios in the late 1950’s and early 1960’s. For the last ten years, multicarrier modulation has been used in
many applications [1], including Digital Audio Broadcasting in Europe [2], high-speed digital subscriber
lines (HDSL) [3], and the most recent generation of wireless LANs (IEEE 802.11a). The multicarrier
technique can be implemented in multiple ways and are sometimes called by different names, including
frequency division multiplexing (FDM) [4] and vector coding [5], as well as DMT [3] and OFDM [6].

There is some debate as to whether multicarrier modulation is better for ISI channels than single
carrier transmission with equalization. It is claimed in [2] that for mobile radio applications, single carrier
with equalization has roughly the same performance as multicarrier modulation with channel coding,
frequency-domain interleaving, and weighted maximum-likelihood decoding. Adaptive loading was not
taken into account in [2], which has the potential to significantly improve multicarrier performance [7]. But
there are other problems with multicarrier modulation which impair its performance, most significantly
frequency offset and timing jitter, which impair the orthogonality of the subchannels. In addition, the
peak-to-average power ratio of multicarrier is significantly higher than that of single carrier systems, which
is a serious problem when nonlinear amplifiers are used. The relative performance of multicarrier systems
versus single carrier, along with techniques to overcome the performance impairments of multicarrier, are
current topics of intense research.
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12.1 Orthogonal Frequency Division Multiplexing (OFDM)

The simplest form of multicarrier modulation divides the data stream into multiple substreams to be
transmitted over different orthogonal subchannels centered at different subcarrier frequencies. The num-
ber of substreams is chosen to make the symbol time on each substream much greater than the delay
spread of the channel or, equivalently, to make the substream bandwidth less then the channel coherence
bandwidth. This insures that the substreams will not experience significant ISI.

Consider a system with baseband bandwidth B (passband bandwidth 2B) and a desired data rate
R. The coherence bandwidth for the channel is assumed to be Bc ≥ B. We set N sufficiently large
so that the baseband subchannel bandwidth BN = B/N << Bc, which insures relatively flat-fading on
each subchannel. The bit stream is divided into N substreams that are linearly-modulated (typically via
MQAM or MPSK) relative to the subcarrier frequencies fn and then transmitted in parallel over the N
subchannels. For nonoverlapping channels we set fn = fc + n(2BN ), n = 0, . . . , N − 1. The multicarrier
system with nonoverlapping channels is shown in Figure 12.1. The data rate for each substream is
RN = R/N , and the symbol time for each substream is TN . The transmitted signal over one symbol time
TN is given by

s(t) = R
{
N−1∑
n=0

sng(t)ej2πfnt

}
., (12.1)

where sn is the complex symbol associated with the nth subcarrier. If we assume raised cosine pulses for
g(t) we get TN = .5(1+β)/BN , where β is the rolloff factor (e.g. for rectangular pulses, TN = .5/BN ). The
substreams are sent in their respective orthogonal subchannels with passband bandwidth 2BN , yielding
a total passband bandwidth N2BN = 2B and data rate NRN = R. Thus, this form of multicarrier
modulation does not change the data rate or signal bandwidth relative to single-carrier systems, but it
almost completely eliminates ISI since the subchannels have BN << Bc and therefore they experience
relatively little frequency-selective fading.

OFDM with nonoverlapping subchannels is basically a form of frequency-division (see Chapter 14.2.1),
a technique that allows multiple users to share the same system bandwidth. The advantage of using
nonoverlapping subchannels is that small frequency offsets and timing jitter do not have much impact on
the orthogonality of the subchannels. However, the frequency division approach is not spectrally efficient.
We can improve on the spectral efficiency of OFDM by overlapping the subcarriers. The subcarriers must
still be orthogonal so that they can be separated out by the demodulator in the receiver. Note that the
baseband subcarriers {cos(2πj/TN), j = 1, 2 . . .} form a set of orthonormal basis functions on the interval
[0, Tn]. Moreover, it is easily shown that no set of subcarriers with a smaller frequency separation forms
an orthonormal set on [0, Tn]. This implies that the minimum frequency separation required for subcar-
riers to remain orthogonal over the symbol interval [0, TN ] is 1/TN . So if we use raised cosine pulses with
β = 1, we would have TN = 1/BN , and a carrier separation of BN . Since the passband bandwidth of each
subchannel is 2BN , the passband subchannels in this system would overlap, as illustrated in Figure 12.2.

Clearly, in order to separate out overlapping subcarriers, a different receiver structure is needed than
the one shown in Figure 12.1. In particular, overlapping subchannels are demodulated with the receiver
structure shown in Figure 12.3. We now show that this structure demodulates the appropriate symbol
without interference from overlapping subchannels. For simplicity, our analysis will assume rectangular
pulse shapes and in-phase signaling only, so that sn in (12.1) is real and modulated with a cosine carrier.
The same structure in Figure 12.3 using sine carriers would be used to demodulated the quadrature signal
component, and the analysis for this component would be basically the same as the in-phase analysis.

Consider the received symbol on the ith branch, ŝi, in the absence of noise (n(t) = 0). The passband
subcarriers with separation 1/TN are given by fj = fc+j/TN , j = 0, 1, . . . , N−1. For transmitted/received
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Figure 12.1: Multicarrier Transmitter and Receiver.
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signal s(t) given by (12.1) we have

ŝi =
1
TN

∫ TN

0


N−1∑
j=0

sj cos(2πfjt)


 cos(2πfit)dt

=
1
TN

N−1∑
j=0

sj

∫ TN

0
cos(2π(fc + j/TN )t) cos(2π(fc + i/TN )t)dt

=
1

2TN

N−1∑
j=0

sj

[∫ TN

0
cos(2π(j − i)t/TN )dt+

∫ TN

0
cos(2π(2fc + j + i)/TN )t)dt

]
(12.2)

≈ 1
2

N−1∑
j=0

sjδ(j − i)

=
1
2
si, (12.3)

where the approximation holds for fc >> 1/TN , in which case the second integral in (12.2) is approx-
imately zero. This multicarrier system has twice the bandwidth efficiency of the system depicted in
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Figure 12.1 with nonoverlapping subcarriers. Note, however, that since the subcarriers overlap, their
orthogonality is compromised by timing jitter, frequency offset, and fading. These effects, even when
relatively small, can significantly degrade performance, as they cause subchannels to interfere with each
other [9].

12.2 Discrete Implementation of OFDM (Discrete Multitone)

Although OFDM was invented in the 1950s, its requirement for separate modulators and demodulators
on each subchannel was far too complex for most system implementations at the time. However, the
development of the FFT and IFFT twenty years later, combined with the realization that OFDM can
be implemented very simply and cheaply with these algorithms, ignited its widespread use. In this
section we illustrate the discrete implementation of OFDM using FFT and IFFT hardware. This discrete
implementation is sometimes refered to as discrete multitone modulation (DMT).

The DMT implementation of OFDM is shown in Figure 12.4 The input data stream is modulated
by a QAM modulator, resulting in a complex symbol X. This symbol stream is passed through a serial-
to-parallel converter, whose output is a set of N parallel QAM symbols corresponding to the symbols
transmitted over each of the subcarriers. Thus, the N symbols output from the serial-to-parallel converter
are the discrete frequency components of OFDM output signal s(t). In order to generate s(t), we therefore
need to convert these frequency components into time samples. We therefore perform an inverse DFT on
these N symbols, which is efficiently implemented using the IFFT algorithm. The IFFT yields a set of
parallel outputs {x0, . . . , xN−1, where

xn =
1√
N

N−1∑
k=0

Xke
j2πnk/N , n = 0, 1, . . . , N − 1. (12.4)

If we ignore for the moment the addition of a cyclic prefix in the next block (discussed in detail below),
the time samples {x0, . . . , xN−1 are ordered by the parallel-to-serial converter and passed through a D/A
converter, resulting in the baseband OFDM signal x(t). Specifically,

x(t) =
1√
N

N−1∑
k=0

Xke
j2πnk/N , 0 ≤ t ≤ TN (12.5)

where, as defined earlier, TN is the duration of the OFDM symbols. The subcarrier frequencies with
this implementation are given by fi = i/TN , i = 0, . . . , N − 1, and the samples {x0, . . . , xN−1 represent
samples of x(t) every TN/N seconds. The baseband OFDM signal x(t) is upconverted to the carrier
frequency, resulting in the transmitted signal s(t). The receiver performs the reverse operation of the
transmitter, so that in the absence of noise or channel distortion the original data sequence is perfectly
recovered. Note that each subchannel has a symbol duration of TN , which is chosen sufficiently large
(B/N << Bc) to remove most ISI that might be introduced by the channel.

While the removal of most ISI generally yields good performance, it is possible to remove all ISI when
the maximum delay spread of the channel is known. This can be done by either adding a guard time
between symbol transmissions equal to the channel delay spread, in which case symbols do not interfere
with subsequent symbols, or by adding a cyclic prefix after the IFFT (as shown in Figure 12.4), which
is subsequently removed in the receiver. Let us now consider the cyclic prefix in more detail. Assume
that the channel delay spread has a maximum value of µTN/N , recalling that TN/N is the sampling
rate of the continuous time signal x(t). Thus, the channel delay spread lasts a maximum of µ additional
samples. The cyclic prefix {xN−µ, . . . , xN−1 consists of the last µ values of the {xn} sequence. These µ
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samples are appended to the beginning of each block of samples, yielding the new input to the D/A of
{xN−µ, . . . , xN−1, x0, x1, . . . , XN−1}. Note that the cyclic prefix increases the number of samples in the
{xn} sequence to N + µ.

Let us now consider the channel impulse response c(t). The received signal in the absence of noise
will be r(t) = x(t) ∗ c(t). Consider sampling c(t) every TN/N seconds, which yields the sample set
{c0, . . . , cµ}. If we convolve {xN−µ, . . . , xN−1 with {c0, . . . , cµ} we obtain the received sequence {rn},
which has duration N + µ. In the receiver we remove the cyclic prefix by removing the last µ samples
in {rn}. Note then that the input to the FFT is the circular convolution of {xn} and {cn}, which does
not necessarily correspond to samples of r(t) = x(t) ∗ c(t). However, adding the cyclic prefix at the
transmitter effectively converts the circular convolution associated with the FFT to a linear convolution.
Thus, the FFT output in the absence of noise is X̂k = CkXk, where Ck is the FFT of {c0, . . . , cµ}. This
indicates that the effects of the channel c(t) can be completely removed by frequency equalization, i.e.
multiplying each X̂k by 1/Ck to completely remove the effects of the channel. However, when noise is
present this leads to noise enhancement and no net gain in the subchannel SNR, as discussed in more
detail below.

12.3 Fading across Subcarriers

The advantage of multicarrier modulation is that each subchannel is relatively narrowband, which miti-
gates the effect of delay spread. However, each subchannel experiences flat-fading, which can cause large
BERs on some of the subchannels. In particular, if the transmit power on subcarrier i is Pi, and the
fading on that subcarrier is αi, then the received SNR is γi = Piα

2
i /(NoB), where B is the bandwidth of

each subchannel. If αi is small then the received SNR on the ith subchannel is quite low, which can lead
to a high BER on that subchannel. Moreover, in wireless channels the αi will vary over time according
to a given fading distribution, so we have the same flat-fading problem as discussed in the context of
narrowband channels. We know from Chapter 6 that flat fading can seriously degrade performance, so it
is important to somehow compensate for subchannels with a low SNR. There are several techniques for
doing this, including frequency equalization, precoding, coding across subchannels, and adaptive loading.
We now describe each of these techniques in more detail.

12.3.1 Frequency Equalization

In frequency equalization the fading αi is basically inverted in the receiver, so the received signal is
multiplied by 1/αi which gives a resultant signal power Piα2

i /α
2
i = Pi. While this removes the impact of

fading on the desired signal, it enhances the noise. Specifically, the incoming noise signal is also multiplied
by 1/αi, so the noise power becomes N0B/α

2
i . Thus, the resultant SNR after frequency equalization,

SNReq, is the same as before equalization. Therefore, frequency equalization does not really change the
impact of the different subcarrier fading. More details on frequency equalization can be found in [2].

12.3.2 Precoding

Precoding uses the same idea as frequency equalization, except that the fading is inverted at the transmit-
ter instead of the receiver. This technique requires that the transmitter have knowledge of the subchannel
fading αi. In this case, if the desired received signal power in the ith subchannel is Pi, and the channel
introduces fading of αi in that subchannel, then the transmitter sends the signal in the ith subchan-
nel with power Pi/α2

i . This signal is multiplied by the channel gain αi, so the received signal power
is Piα2

i /α
2
i = Pi, as desired. Note that the channel inversion takes place at the transmitter instead of
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the receiver, so the noise power remains as N0B. Precoding is quite common on wireline multicarrier
systems like HDSL. There are two main problems with precoding in a wireless setting. First, precoding is
basically channel inversion, and we know from Section 6.3.5 that inversion is not power-efficient in fading
channels. In fact, an infinite amount of power is needed to do channel inversion on a Rayleigh channel.
The other problem with precoding is the need for accurate channel estimates at the transmitter. This
same problem is encountered in adaptive modulation.

12.3.3 Adaptive Loading

Adaptive loading is based on the adaptive modulation techniques discussed in Chapter 9. The basic idea
is to vary the data rate and power assigned to each subchannel relative to that subchannel gain. As
in the case of adaptive modulation, this requires knowledge of the subchannel fading {αi, i = 1, . . . , N}
at the transmitter. We can optimize the power and rate associated with each subchannel to maximize
capacity or to maximize the rate of a variable-rate variable-power modulation scheme like MQAM. Let’s
first consider the capacity maximization. The capacity of the multicarrier system with N subchannels of
baseband bandwidth BN and corresponding subchannel gains {αi, i = 1, . . . , N} is given by1:

C =
N∑
i=1

BN log

(
1 +

α2
iPi

NoBN

)
, (12.6)

where we assume a power constraint across subchannels as
∑
i Pi = P . We would like to find the power Pi

to allocate to each subchannel that maximizes this expression. But this is the same optimization problem
as in Chapter 4.4. The optimal power allocation is thus the same water-filling given by Equation (4.24):

Pi

P
=

{
1
γ0

− 1
γi

γi ≥ γ0

0 γi < γ0
(12.7)

for some cutoff value γ0, where γi = α2
iP/(N0BN ). The cutoff value is obtained by substituting the power

adaptation formula into the power constraint. The capacity then becomes

C =
N∑

i=1(γi≥γ0)
BN log(γi/γ0). (12.8)

Suppose we now apply the variable-rate variable-power MQAM modulation scheme described in
Chapter 9 to the subchannels. Then our total data rate will be given by

R = BN

N∑
i=1

log(1 +KγiPi/P ), (12.9)

where K = −1.5/ ln(5BER). Optimizing this expression relative to the Pis yields the optimal power
allocation

Pi

P
=

{
1
γ0

− 1
Kγi

γi ≥ γ0/K

0 γi < γ0/K
(12.10)

1This summation is the exact capacity when the αis are independent. However, in order for the αis to be independent,
the subchannels must be separated by the coherence bandwidth of the channel, which would imply that the subchannels are
no longer flat fading. Since the subchannels are designed to be flat-fading, the subchannel gains {αi, i = 1, . . . , N} will be
correlated, in which case the capacity obtained by summing over the capacity in each subchannel is an upper bound on the
true capacity. We will take this bound to be the actual capacity, since in practice the bound is quite tight.
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and corresponding data rate

R = BN

N∑
i=1,γi≥γ0/K

log(Kγi/γ0). (12.11)

12.3.4 Coding across Subchannels

The basic idea in coding across subchannels is to encode incoming bits into a length-N codeword, where
N is the number of subchannels in the multicarrier system. Then if most of the subchannels have a high
SNR, the codeword will have most coded bits received correctly, and the errors associated with the few
bad subchannels can be corrected. This technique only works well for channels with a large delay spread,
where the coherence bandwidth of the channel is on the order of the bandwidth of each subchannel.
In that case each subchannel has independent fading, and coding across subchannels provides frequency
diversity. However, if the coherence bandwidth of the channel is large, then the fading across subchannels
will be highly correlated, which will significantly reduce the effect of coding. Note that coding across
subchannels is the only technique discussed in this section that takes advantage of the fact that the data
on all the subcarriers can be processed simultaneously. The other techniques discussed in this section are
all basically flat-fading compensation techniques, which apply equally to multicarrier systems as well as
narrowband flat-fading channels.
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Figure 12.4: OFDM with IFFT/FFT Implementation.
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Chapter 13

Spread Spectrum and RAKE Receivers

Although bandwidth is a valuable commodity in wireless systems, increasing the transmit signal band-
width (e.g. with coding) can sometimes improve performance. Spread spectrum is a technique which
increases signal bandwidth to reduce ISI and narrowband interference. In conjunction with a RAKE
receiver, spread spectrum also provides a form of diversity, called code diversity. Spread spectrum first
achieved widespread use in military applications due to its inherent property of “hiding” the signal below
the noise floor during transmission, and its resistance to narrowband jamming. Since both of these prop-
erties are desirable in wireless systems as well, it has become increasingly pervasive in wireless system
designs, and is now one of the two standards for digital cellular in the U.S.

13.1 Spread Spectrum Modulation

Spread spectrum is a modulation technique which increases the transmit signal bandwidth. There are
several benefits obtained in exchange for this increased bandwidth. First, spread spectrum modulation
mitigates the effect of intersymbol interference (ISI) and narrowband interference. The narrowband
interference rejection also applies to hostile jamming signals, and for that reason spread spectrum is
often used in military systems. In addition, spread spectrum also “hides” the signal beneath the noise
floor. This property means that the transmitted signal is unlikely to be detected (low probability of
interceptions, or LPI), another desirable property for military communication systems. Finally, spread
spectrum modulation can be used as a multiple access technique, which is the basis of the digital cellular
standard IS-95.

There are two common forms of spread spectrum: direct sequence and frequency hopping. Since
direct sequence is more commonly used, we will focus on this technique. Frequency-hopping is briefly
described in §13.6. In direct sequence spread spectrum modulation, the data signal sb(t) is multiplied by
a pseudorandom sequence sc(t) = ±1, where the bit duration Tb is some multiple K of the spreading code
bit duration Tc. The spreading code bits are usually referred to as chips. The multiplication of spreading
code and BPSK data sequence is illustrated in Figure 13.1.

The pseudorandom sequence is also called the chip sequence, and 1/Tc is called the chip rate. Because
the chip duration is a fraction K of the bit duration, its 3 dB bandwidth Bc is approximately K times
bigger than the original signal bandwidth Bb

1. Thus, multiplying the data sequence by the spreading
code results in the convolution of these two signals in the frequency domain. Thus, the transmitted

1For square pulses, both the data sequence and the chip sequence have infinite bandwidth. The 3 dB signal bandwidth
is defined as the bandwidth where the signal power first reaches half of its maximum value.
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Figure 13.1: Spreading Code Multiplication

signal sb(t)sc(t) has frequency response S(f) = Sb(f) ∗ Sc(f), which has a 3 dB bandwidth B of roughly
(K + 1)Bb.

The spreading factor J is defined as the ratio of the signal bandwidth after spreading B to the
original data signal bandwidth Bb. The spread factor is generally approximately equal to the number of
chips per bit: J = B/Bb ≈ K. This factor determines how much interference and multipath rejection
occurs at the receiver, as will be discussed in more detail below. The value of J depends both on the
signal modulation used and the bandwidth of the spreading code. When the code is modulating a pure
RF carrier, the transmitted signal is a sequence of pulses, which has the form of a sinc function in the
frequency domain. The approximate transmitted bandwidth for this signal equals the 3 dB bandwidth
of the main lobe (.88/Tc). Even when the data signal is not a pure carrier, this value is usually used to
approximate the bandwidth of the transmitted signal.

13.2 Pseudorandom (PN) Sequences (Spreading Codes)

The PN sequences are deterministic, with approximately the same number of +1s and -1s, low correlation
between shifted versions of the same sequence, and a low cross correlation between different sequences.
Thus, although they are deterministic, they have many of the same characteristics as a random binary
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sequence of ±1. For this reason they are called pseudorandom sequences.
These sequences are typically generated as a binary sequence of 1s and 0s using a shift register with

feedback logic, and then the sequence of 1s and 0s is converted to a pulse train of ±1. The shift register,
consisting of n stages, is illustrated in Figure 13.2. The binary sequence output from the shift register is
cyclical with a maximum period of 2n − 1 cycles.

Stage

1

Stage

2

Stage

n

Feedback Logic

Processing

bit sequence
  10110...

s (t)
c

Figure 13.2: Generation of PN Sequences

The autocorrelation of the spreading code sc(t) over a bit time determines the multipath rejection
properties of the spread spectrum signaling. This autocorrelation is defined as

ρc(τ) =
1
Tb

∫ Tb=KTc

0
sc(t)sc(t− τ)dt =

1
K

K∑
k=1

sc(kTc)sc(kTc − τ). (13.1)

As will be evident in the analysis below, the best autocorrelation function for multipath rejection is a
delta function: ρc(τ) = δ(τ). Unfortunately, we can’t design codes with the autocorrelation equal to a
delta function for finite values of n. Much work in spread spectrum in the 60s and 70s was focussed on
designing codes with autocorrelation close to a delta function.

Among all linear codes, maximal linear codes were found to have the best autocorrelation properties
for ISI rejection. Maximal codes are the longest codes that can be generated by a shift register of a given
length. Specifically, the codes have length N = 2n− 1 for a binary shift register of length n, so the codes
repeat every NTc seconds. For maximal codes, the number of negative ones in a sequence (2n−1 − 1)
is approximately equal to the number of ones (2n−1), and the statistical distribution of these two chip
values doesn’t change over the course of the sequence. This property has some desirable features relative
to implementation [1], and also insures maximal spreading (if a sequence of 1s is very long, on the order
of N , then the data bit roughly just gets multiplied by 1 and there is no spreading). The autocorrelation
function of maximal codes, assuming the number of chips per bit K = N , is given by

ρc(τ) =

{
1 − |τ |(1+1/N)

Tc
|τ | ≤ Tc

−1/N |τ | > Tc
(13.2)

Thus, for all delays bigger than a chip time, the correlation value is −N = −1/(2n − 1), which decreases
exponentially with the size of the spreading sequence n. For delays between −Tc and Tc, the correla-
tion varies linearly from −1/N to 1, with the maximum corresponding to zero delay, as illustrated in
Figure 13.3. We will see in the next section why this autocorrelation property has good ISI rejection,
assuming that K = N . When K < N the autocorrelation function is not as steep, and thus maximal
length codes are not as effective at removing ISI. More details about code properties and design can be
found in [1, 2, 3].
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Figure 13.3: Autocorrelation of Maximal Code (K = N)

13.3 Direct Sequence Spread Spectrum

An end-to-end direct sequence spread spectrum system is illustrated in Figure 13.4. The data bits are
first modulated to form the baseband data signal x(t) =

∑
k dkg(t − kT ), where g(t) is the modulator

shaping pulse. This signal is then multiplied by the spreading code sc(t) with chip time Tc = Tb/K, and
then upconverted through multiplication by the carrier cos 2πfct. The spread signal passes through the
channel h(t) which also introduces additive noise n(t) and narrowband interference I(t).

The receiver input r(t) is used to synchronize the PN generator to the spreading code delay τ
introduced in transmission. This synchronization procedure can be quite complex, especially for ISI
channels, and synchronization circuitry makes up a large part of any spread spectrum receiver. Details
on synchronization can be found in [1, 3].

Assuming perfect synchronization, the received signal r(t) is despread by multiplying it with a
synchronized version sc(t − τ) of the original spreading code sc(t). The value of τ will depend on the
channel and the synchronizer. If h(t) = δ(t), i.e. no multipath is introduced by the channel, then τ = 0.
However, if the channel introduces multipath, then the synchronizer will generally synchronize either to
the strongest multipath component or the first multipath component above a given threshold. Specifically,
if h(t) =

∑
i αiδ(t − τi) the synchronizer locks to the strongest multipath component by setting τ = τi

for αi = maxj αj . It locks to the first component above a given threshold αthres by setting τ = τi for
αi = minj : αj ≥ αthres. The synchronizer also helps with carrier recovery, and therefore has input to
the demodulator also. After despreading, the signal x̂(t) passes through a conventional demodulator and
decision device. This baseband recovery of the data signal is identical to the optimal detectors defined
in Chapter 5.3 for different linear modulation techniques. Nonlinear (constant envelope) modulation is
typically used in conjunction with frequency-hopping spread spectrum. Thus, there are two stages in the
receiver demodulation for direct sequence spread spectrum: despreading and narrowband demodulation.
We now examine these two stages in more detail.

We assume for simplicity that modulator is simple BPSK with rectangular pulse shapes (g(t) =
1, 0 ≤ t ≤ Tb). The matched filter then simply multiplies x̂(t) by the carrier cos 2πfct, then multiplies by
1/Tb and integrates from zero to Tb. The multipath and interference rejection occurs in this demodulation
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Figure 13.4: Spread Spectrum System

process. Specifically, the input to the demodulator is given by

x̂(t) = [x(t)sc(t) cos(2πfct) ∗ h(t)]sc(t− τ) + n(t)sc(t− τ) + I(t)sc(t− τ). (13.3)

Note that in the absence of multipath h(t) = δ(t), the spreading/despreading process has no impact on
the baseband signal x(t). Specifically, the PN code consists of ±1, so multiplying sc(t) by an synchro-
nized copy of itself yields s2c(t) = 1 for all t. For h(t) = δ(t), the baseband signal component of x̂(t) is
[x(t)sc(t)]sc(t) = x(t), since s2c(t) = 1. We assume that the statistics of the noise do not change when
it is multiplied by the wideband PN sequence2. Therefore, without interference I(t) = 0 the spread-
ing/despreading process has no impact on performance. We now discuss its interference and multipath
rejection properties. We will treat interference and multipath rejection separately: when both are present
we can combine the analyses to determine the combined effect.

For narrowband interference rejection, assume h(t) = δ(t). Then the synchronizer in Figure 13.4 will
have τ = 0, yielding

x̂(t) = x(t)s2c(t) + n(t)sc(t) + I(t)sc(t) = x(t) + n′(t) + I(t)sc(t). (13.4)

Then the demodulator output is given by

d̂k =
1
Tb

∫ Tb

0
dks

2
c(t) cos2(2πfct)dt+

1
Tb

∫ Tb

0
n(t)sc(t) cos(2πfct)dt+

1
Tb

∫ Tb

0
I(t)sc(t) cos(2πfct)dt

= .5dk + nk + Ik. (13.5)

Since multiplying an AWGN process by a carrier does not change its statistics, nk is an AWGN sample.
The narrowband interference rejection is apparent in the last term of (13.5). Specifically, we assume that
I(t) is narrowband (with a bandwidth on the order of T−1

b ), so it will be approximately constant over a
bit time Tb. Recall that the spreading sequence sc(t) is a sequence of ±1 that changes every chip time
Tc = Tb/K. Thus, integrating the product I(t)sc(t) over a bit time Tb will yield approximately zero.

2This is not true in general, but is reasonably accurate for analysis purposes, and greatly simplifies the analysis.
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Also, the cosine term is changing rapidly relative to I(t) and sc(t) since fc >> T−1
c >> T−1

b . Therefore,
Ik ≈ 0. The narrowband interference rejection can be seen more precisely in the frequency domain, as
shown in Figure 13.5. We see in this figure that when the narrowband interference I(f) is multiplied by
the spreading code in the receiver, its bandwidth is increased by the spreading factor J ≈ K. When this
spread interference signal goes through the demodulator, it passes through an integrator or equivalently,
a narrowband filter the size of the data signal bandwidth. Thus, all of the spread interference outside the
narrowband filter is removed, as shown in Figure 13.5. Thus, the interference power in the demodulator
is reduced by approximately a factor of K. The noise is not impacted by the spreading process in the
receiver.

Narrowband
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Interference

Narrowband
Interference
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with Spreading
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     Output

X(f)
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* cN(f)   S (f)

Figure 13.5: Signal and Interference after Despreading

The ISI rejection is even stronger when the spreading code has good autocorrelation properties over
a bit time. Let us assume a multipath channel with one delayed component: h(t) = α1δ(t) + α2δ(t −
τ0). Suppose that the first multipath component is stronger than the second: α1 > α2, so that the
receiver synchronizes to the first component (τ = 0 in Figure 13.4). Then, in the absence of narrowband
interference (I(t) = 0), we have

x̂(t) = α1x(t)s2c(t) cos(2πfct) + α2x(t− τ0)sc(t− τ0)sc(t) cos(2πfc(t− τ0)) + n(t)sc(t). (13.6)

The demodulator output is then given by

d̂k =
1
Tb

∫ Tb

0
α1dks

2
c(t) cos2(2πfct)dt+

1
Tb

∫ Tb

0
α2dk−k0sc(t)sc(t− τ0) cos(2πfct) cos(2πfc(t− τ0))dt

+
1
Tb

∫ Tb

0
n(t)sc(t) cos(2πfct)dt

≈ .5α1dk + .5α2dk0 + nk, (13.7)

where dk−k0 is the symbol corresponding to time t− τ0 and the approximation assumes fc >> 1/Tb. The
noise nk is an AWGN sample as described above. Let us consider the term dk0:

dk0 = dk−k0
1
Tb

∫ Tb

0
sc(t)sc(t− τ0) cos(2πfct) cos(2πfc(t− τ0))dt

= dk−k0
1
Tb

∫ Tb

0
sc(t)sc(t− τ0)(cos(2πfcτ0) + cos(4πfct− 2πfcτ0))dt

a= dk−k0 cos(2πfcτ0)
1
Tb

∫ Tb

0
sc(t)sc(t− τ0)dt
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b= dk−k0 cos(2πfcτ0)ρc(τ0), (13.8)

where a follows from the fact that fc >> T−1
c and b follows from the definition of ρc(t). We therefore

see that the multipath rejection is a direct function of the spreading code autocorrelation. If we assume
a maximal length code with K = N and τ0 > Tc then the multipath term dk−k0 cos(2πfcτ0)ρc(τ0) =
−dk−k0 cos(2πfcτ0)/K, i.e. the power of all multipath components at delays greater than a chip time is
reduced by roughly the spreading gain. Since the spreading gain is generally quite large, this effectively
removes most of the ISI. There is some constructive and destructive interference from multipath delayed
by less than a chip time, which gives rise to Rician fading statistics of the LOS path.

The problem with the above receiver design is that the exact delay of the LOS component is not
known. Moreover, the LOS path may not be the strongest path, or it may be blocked entirely. In
practice, a spread spectrum receiver has a header with known data which is used to acquire the delay of
the spreading code. The acquisition loop steps through the code until it finds the delay which is highly
correlated with the incoming signal. It then further refines the delay until it is perfectly synchronized
with the incoming signal. The synchronization is continually adjusted throughout data demodulation
since, if the receiver code becomes delayed by more than a small fraction of Tc relative to the transmitted
signal code, performance is significantly compromised. The code acquisition and tracking process is the
hardest part of implementation in spread spectrum systems. See [1, 3] for detailed design and analysis
of this part of the receiver design.

A more complicated receiver can have several branches, with each branch synchronized to a different
multipath component (so the time delay of the PN code between branches is Tc). The receiver determines
which branch has the strongest signal, and this signal is passed to the demodulator. This turns out to
be the simplest implementation of a RAKE receiver, shown in Figure 13.6 below, where choosing the
branch with the strongest signal corresponds to selection diversity. We now describe the general RAKE
structure, which can use any of the diversity combining techniques discussed in Chapter 7.

13.4 RAKE receivers

A RAKE receiver uses the autocorrelation properties of the code to coherently combine all multipath
components. The RAKE receiver structure is shown in Figure 13.6. The RAKE is essentially another
form of diversity combining, since the spreading code induces a time diversity on the transmitted signal
so that independent multipath components separated by more than a chip time can be resolved. Any of
the combining techniques discussed in Chapter 7 may be used, although equal gain combining is the most
common, since it doesn’t require knowledge of the multipath amplitudes. A more detailed description of
the RAKE receiver for the discrete-time multipath channel model with unknown delays and amplitudes
can be found in [2]. If we ignore the effects of interference and synchronization errors, and we also assume
a steep autocorrelation function which equals zero for codes delayed by more than a chip time and one
for codes within a chip time, then performance of the RAKE receiver with M branches is identical to any
other M -branch diversity technique. Since these assumptions usually don’t hold in practice and spread
spectrum is more difficult to implement than other diversity techniques, spread spectrum is not usually
used for diversity alone. However, if spread spectrum signaling is chosen for its other benefits, such as
its multiuser or interference rejection capabilities, then M branch diversity comes almost for free.
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13.5 Spread Spectrum Multiple Access

In spread spectrum multiple access each user has a unique spreading code assigned to him which is used
to modulate his transmitted signal. The users, modulated by their unique spreading codes, all occupy
the same bandwidth, so they are superimposed in time and in frequency. However, the receiver can use
the properties of the spreading codes to separate out different users. The spreading codes, which can be
orthogonal or semi-orthogonal, consist of chip sequences at a much higher rate than the data rate, so
the spreading code has a larger bandwidth than the data signal. Hence, modulating the data signal with
these spreading codes results in a larger transmit signal bandwidth. However, since signals modulated by
different spreading codes can occupy the same bandwidth and still be separated out at the receiver, this
technique is bandwidth efficient. In fact, under ideal conditions spread spectrum multiple access with
orthogonal codes can accommodate the same number of users as time-division and frequency-division,
since all of these techniques provide orthogonal channels between users. Spread spectrum multiple access
with semi-orthogonal codes can support more users than these orthogonal techniques, since there is often
an infinite number of semi-orthogonal codes that can be assigned to different users. However, with
semi-orthogonal codes users interfere with each other, so that although there is no hard limit on the
total number of users that can share the channel, if too many users access the channel simultaneously
then all users will have poor performance. We thus say that systems with semi-orthogonal codes are
“interference-limited.”

13.5.1 Spreading Codes for Multiple Access

Multiple access using direct sequence spread spectrum is accomplished by assigning each user a unique
spreading code sequence sci(t). As we saw earlier, the autocorrelation function of this code determines
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its multipath rejection properties. The autocorrelation, which is typically defined over one symbol time,
is given by

ρ(τ) =
1
Ts

∫ Ts

0
sci(t)sci(t− τ)dt. (13.9)

The cross correlation properties of the code set determine the amount of interference between users. The
cross correlation between the codes assigned to user i and user j over one symbol time is given by

ρij(τ) =
1
Ts

∫ Ts

0
sci(t)scj (t− τ)dt. (13.10)

Ideally we would like ρ(τ) = δ(τ) to eliminate multipath and ρij(τ) = 0 ∀τ to eliminate multiple
access (MAC) interference. However, ρij(τ) = 0 ∀τ only if we have orthogonal codes. Specifically, if
we have K chips per bit we can obtain, using Walsh-Hadamard codes for example [1, 4], exactly K
orthogonal codes (ρij(τ) = 0 ∀τ). Suppose our information signal has bandwidth B. Since the spreading
code with K chips per bit has a bandwidth expansion of roughly K, each user’s spread signal requires a
bandwidth of roughly KB. Since these users share the same spectrum, with orthogonal coding we require
a bandwidth of K times the original signal bandwidth to support K users. This is the same requirement
as frequency-division, so under ideal conditions these two techniques are equivalent. In practical scenarios
spread spectrum with orthogonal codes is more susceptible to multipath (since it is a wideband signal)
and it is more complex to implement. In addition, multipath in the channel typically compromises the
orthogonality of the codes, leading to MAC interference. For these reasons multiple access is not typically
implemented using orthogonal spread spectrum coding.

We can accommodate more than K users in a total bandwidth of KB using semi-orthogonal codes,
but then the signals modulated by these codes cannot be completed separated in the receiver. Thus
semi-orthogonal codes exhibit nonzero MAC interference. However, we can design spreading codes to
make this interference as small as possible (i.e. ρij(τ) ≈ 0 ∀τ). In spreading code design there is usually a
tradeoff between good multipath rejection properties (ρ(τ) ≈ δ(τ)) and good MAC interference rejection
properties (ρij(τ) ≈ 0). It is difficult to design codes which are good at both multipath and MAC
interference rejection.

We can typically get a very large number of semi-orthogonal codes with cross correlation

ρij(τ)
4
=

1√
G

≈ 1√
J
, (13.11)

where J is the bandwidth expansion factor of the codes (the ratio of the spread signal bandwidth to the
original signal bandwidth) of the codes. Gold codes are an example of codes with this property [1, 4].

13.5.2 Broadcast Channels

Let us first consider a broadcast channel with semi-orthogonal codes. The transmitter for this system
is shown in Figure 13.7 and the channel and receiver in Figure 13.8. In a broadcast channel the signals
of all users are sent simultaneously by the transmitter (base station), and each receiver must demod-
ulate its individual signal. Specifically, for a K-user system the transmitter has K modulated signals
s1(t), . . . , sK(t) to send to the K users. Assuming linear modulation these signals are given by

si(t) =
∞∑
l=1

dilg(t− lTs), (13.12)

345

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


where dil is the ith user’s symbol over symbol time [(l−1)Ts, lTs], g(t) is the pulse shape and Ts the symbol
time. For simplicity in our analysis we assume a baseband system with binary modulation (Ts = Tb) and
rectangular pulse shapes. The analysis easily extends to more general linear modulations at passband.

The transmitter consists of K branches, where the ith branch multiplies the ith signal si(t) with a
semi-orthogonal spreading code sci(t). The branches are summed together, resulting in the signal

x(t) =
K∑
i=1

si(t)sci(t) (13.13)

which is transmitted over the channel.

Σ

s (t)
1

s (t)

x

s   (t)

x

s   (t)

x(t)

c 1

c K

K

Figure 13.7: Broadcast Transmitter.

The signal received by user i first passes through the ith user’s channel, which has impulse response
hi(t) and AWGN. Thus the received signal at the ith user’s receiver is x(t)∗hi(t)+n(t). This signal is first
multiplied by the ith user’s spreading code sci(t), which is perfectly synchronized to the corresponding
code in the transmitted signal3. The signal is then integrated over a bit time (symbol time for nonbinary
modulation). The output of the integrator is

ŝi(t) + Ii(t) = d̂il + Iil, (13.14)

where d̂il is the demodulated bit from the ith user at time l and Iil is the interference from other users
over this bit time.

Let us first assume that each user has a channel with no multipath, so hi(t) = αiδ(t). First consider
the desired signal component ŝi(t) = d̂il. We have

ŝi(t) =
1
Tb

∫ lTb

(l−1)Tb

[si(t)sci(t) ∗ hi(t) + n(t)]sci(t)dt = αidil + nil = d̂il, (13.15)

3This synchronization is even more difficult than in the single-user case, since it must be done in the presence of multiple
spread signals. In fact some spreading code sets are obtained by shifting a single spreading code by some time period. For
these systems there must be some control channel to inform the receiver which time shift corresponds to its desired signal.
More details on the synchronization for these systems can be found in [1].
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Figure 13.8: Broadcast Channel and Receiver.

where nil =
∫ lTb

(l−1)Tb
n(t)sci(t)dt is the noise sample at the output of the integrator at time l. Thus, in the

absence of other users, the demodulated bit differs from the original bit due to signal attenuation and
noise, as in a single-user channel.

Now consider the interference signal Ii(t). We have

Ii(t) =
K∑

j=1

j 6=i

1
Tb

∫ lTb

(l−1)Tb

[sj(t)scj (t) ∗ hi(t)]sci(t)dt = αi

K∑
j=1

j 6=i

djl
1
Tb

∫ lTb

(l−1)Tb

scj (t)sci(t)dt = αi

K∑
j=1

j 6=i

djl√
G

= Iil,

(13.16)
where

√
G is defined by the cross correlation (13.11). We see that both the interference Ii(t) and signal

ŝi(t) are attenuated by the path gain αi, and therefore this path gain has no impact of the receiver signal-
to-interference power ratio (SIR)4. In particular, for a transmitted signal power of S the received signal
power at the ith receiver is α2

iS and the interference power is I = α2
iS(K − 1)/G, so SIR = G/(K − 1).

Typically semi-orthogonal code systems are designed for a large number of users, so thatK−1 >> N0B/S.
Thus we can typically neglect noise in our performance analysis, since the MAC interference power is
much bigger than the noise power. In this case we say that these systems are interference-limited.

Now consider a more general channel hi(t) =
∑N
n=1 αinδ(t − τin). First consider the desired signal

component:

ŝi(t) =
1
Tb

∫ lTb

(l−1)Tb

[si(t)sci(t) ∗ hi(t) + n(t)]sci(t)dt

=
1
Tb

∫ lTb

(l−1)Tb

(
N∑
n=1

αinsi(t− τin)sci(t− τin)sci(t) + n(t)sci(t)

)
dt

4The path gain does impact SNR, but noise is typically neglected in analysis of spread spectrum MAC systems, since
they tend to be interference-limited.
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=
N∑
n=1

αindil
1
Tb

∫ lTb

(l−1)Tb

sci(t− τin)sci(t)dt+ nil

=
N∑
n=1

αindilρ(τin) + nil (13.17)

where nil is the same as before and we assume τin < Tb so that si(t− τin) = dil over the lth bit interval
(For τin > Tb, si(t− τin) 6= dil so we get ISI between between bits). Thus, in the absence of other users,
the demodulated bit has fading due to the multipath and the code autocorrelation, as in the single-user
case.

Now consider the interference signal Ii(t) for this more general channel. We have

Ii(t) =
K∑

j=1

j 6=i

1
Tb

∫ lTb

(l−1)Tb

[sj(t)scj (t) ∗ hi(t)]sci(t)dt

=
K∑

j=1

j 6=i

1
Tb

∫ lTb

(l−1)Tb

sci(t)

(
N∑
n=1

αinscj (t− τin)sj(t− τin)

)
dt

=
K∑

j=1

j 6=i

N∑
n=1

αinsj(t− τin)
1
Tb

∫ lTb

(l−1)Tb

sci(t)scj(t− τin)dt

=
K∑

j=1

j 6=i

N∑
n=1

αindjlρij(τin)

=
K∑

j=1

j 6=i

N∑
n=1

αindjl√
G

= Iil, (13.18)

where we again assume τin < Tb, so sj(t−τin) = djl over the lth bit interval. We see that the interference
also experiences fading due to multipath, and the interference power on each path is reduced by the code
cross correlation.

13.5.3 Multiple Access Channels

We now consider a multiple access channel (MAC) with semi-orthogonal codes. In a MAC channel each
user’s signal is generated by the individual user. These signals pass through the user’s individual channel
and are then summed together at the receiver, along with AWGN. Since each signal goes through a
different channel, the received interference power can be much larger than the received signal power, as
we now show in more detail.

The transmitter and channel for each individual user in a K-user MAC is shown in Figure 13.9. We
assume that the users are synchronized, so that the lth bit interval is the same for all users (the asyn-
chronous MAC is more complex to analyze, and generally has worse performance than the synchronous
MAC). We see from Figure 13.9 that the ith user generates an information signal si(t). As in the broad-
cast model above we assume binary linear modulation, a baseband system, and rectangular pulses for
si(t), but these assumptions can be generalized without significantly changing the analsys. The ith user
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multiplies his information signal by his spreading code sci(t) before sending it over his channel, which
has impulse response hi(t). All the user’s signals are summed at the receiver front end and corrupted by
AWGN n(t).
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Figure 13.9: MAC Transmitter and Channel.

The signal entering the MAC receiver is given by

x(t) =

[
K∑
i=1

si(t)sci(t) ∗ hi(t)
]

+ n(t). (13.19)

The receiver consists of K branches corresponding to the K received signals, as shown in Figure 13.10.
The ith branch multiplies the received signal by the ith user’s spreading code sci(t), which is perfectly
synchronized to the corresponding code in the ith user’s transmitter. The signal is then integrated over
a bit time (symbol time for nonbinary modulation). The output of the integrator is

ŝi(t) + Ii(t) = d̂il + Iil, (13.20)

where d̂il is the demodulated bit from the ith user at time l and Iil is the interference from other users
over this bit time.

Assume that each user has a channel with no multipath, so hi(t) = αiδ(t). The desired signal
component ŝi(t) is

ŝi(t) =
1
Tb

∫ lTb

(l−1)Tb

[si(t)sci(t) ∗ hi(t) + n(t)]sci(t)dt = αidil + nil = d̂il, (13.21)

where nil is the noise sample at the output of the integrator at time l. Thus, in the absence of other
users, the demodulated bit differs from the original bit due to signal attenuation αi and noise, as in a
single-user and broadcast channels.
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Figure 13.10: MAC Receiver.

Now consider the interference signal Ii(t). We have

Ii(t) =
K∑

j=1

j 6=i

1
Tb

∫ lTb

(l−1)Tb

[sj(t)scj (t) ∗ hj(t)]sci(t)dt =
K∑

j=1

j 6=i

αjdjl
1
Tb

∫ lTb

(l−1)Tb

scj (t)sci(t)dt =
K∑

j=1

j 6=i

αjdjl√
G
, (13.22)

where αj is the path gain of the jth user’s channel. We see that, in contrast to the broadcast channel, the
interference Ii(t) and signal ŝi(t) are attenuated by different path gains. Therefore, if αj >> αi∀j 6= i,
the MAC interference can be quite large. In particular, if αj = α >> αi for j 6= i we get that for
transmitted signal power S the received signal power on the ith branch is Si = α2

iS and the received
interference power on this branch is Ii = α2(K − 1)/G leading to an SIR of

Si
Ii

=
Gα2

i

(K − 1)α2
<<

G

K − 1
. (13.23)

Since these systems are designed such that G
K−1 equals the required SIR for acceptable performance, we

see that MAC channel performance can be significantly degraded by path loss.
The solution to this problem is to use power control based on channel inversion, where each user

transmits signal power S/α2
i so that his received signal power is S, regardless of his path loss. This will

lead to an SIR of G/(K−1) for each user. The disadvantage of this form of power control is that channel
inversion leads to poor channel capacity and can also cause significant interference to adjacent cells in a
cellular system. Despite these problems, channel inversion is used on the mobile-to-base connection in
the IS-95 cellular system standard.

For more general channels hi(t) =
∑N
n=1 αinδ(t−τin) the desired signal component, assuming τin < Tb,
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is the same as in the case of the broadcast channel:

ŝi(t) =
N∑
n=1

αindilρ(τin) + nil (13.24)

Thus, in the absence of other users, the demodulated bit has fading due to the multipath and the code
autocorrelation, as in the single-user and broadcast cases.

Now consider the interference signal Ii(t) for this more general channel, assuming τjn < Tb. We have

Ii(t) =
K∑

j=1

j 6=i

1
Tb

∫ lTb

(l−1)Tb

[sj(t)scj (t) ∗ hj(t)]sci(t)dt

=
K∑

j=1

j 6=i

1
Tb

∫ lTb

(l−1)Tb

sci(t)

(
N∑
n=1

αjnscj (t− τjn)sj(t− τjn)

)
dt

=
K∑

j=1

j 6=i

N∑
n=1

αjnsj(t− τjn)
1
Tb

∫ lTb

(l−1)Tb

sci(t)scj (t− τjn)dt

=
K∑

j=1

j 6=i

N∑
n=1

αjndjlρij(τjn)

=
K∑

j=1

j 6=i

N∑
n=1

αjndjl√
G

. (13.25)

We see that the interference also experiences fading due to multipath, with path gains that are different
from those on the desired signal component. The interference power on each path is reduced by the code
cross correlation.

13.5.4 Multiuser Detection

Interference signals in spread spectrum multiple access need not be treated as noise. If the spreading code
of the interference signal is known, then that signal can be detected and subtracted out. Alternatively, the
received signal can be projected onto a subspace that is orthogonal to the direction of the interfering signal.
Multiuser detection is an active field of research in the spread spectrum area. The optimal multiuser
detector was obtained by Verdu based on the Viterbi algorithm. Unfortunately, this algorithm has
exponential complexity in the number of users, and also requires channel knowledge. Simpler multiuser
detection algorithms include the decorrelating detector and the successive interference canceller. A good
overview of multiuser detection can be found in [5] and a more systematic treatment in [6]. Recent work
in this area for ISI channels is described in [7]

13.6 Frequency-Hopping

Frequency-hopping uses the same idea of bandwidth spreading and diversity as in direct sequence, how-
ever the diversity is in frequency rather than in time. Specifically, if the data signal has bandwidth
B, and bandwidth Bt is available for signal transmission, then Bt is divided into equally spaced chan-
nels of bandwidth B with corresponding center frequency fi. The data signal is then transmitted, or
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hopped, over the different carrier frequencies, with the carrier frequency changing every Tc seconds. The
sequence of carrier frequencies is determined by a pseudorandom sequence. The receiver must lock to the
pseudorandom sequence, then use a frequency synthesizer to demodulate the narrowband signal at the
appropriate carrier. Frequency-hopping has the same interference rejection capability as direct-sequence,
since the signal only occupies the interference bandwidth for a short period of time. It is also resistant to
frequency-selective fading, since the signal hops over many frequency bands, thus the channels with deep
nulls are averaged out. A more detailed description of frequency-hopping and its fading and interference
immunity can be found in [3, 8]. Slow frequency-hopping is also used in cellular systems to average
out interference from other cells. Frequency-hopping has some benefits over direct-sequence in multiuser
systems, and it can also be easily combined with narrowband signaling techniques, as in the GSM system.
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Chapter 14

Multiuser Systems

The topics covered up until now deal with communication techniques for a single user. In multiuser
systems the system resources (power, bandwidth, etc.) must be divided among the multiple users. In
addition, since bandwidth is a precious resource, systems can take advantage of the signal power falloff
with distance to reuse bandwidth at spatially-separate locations. The concept of frequency reuse is the
fundamental technology underlying cellular system design, which are dealt with in the next chapter. In
this chapter we discuss channelization methods for multiuser systems (time-division, frequency-division,
and code-division). We then develop the fundamental capacity limits of multiuser broadcast and multiple
access channels under these different channelization methods. We also discuss random multiple access
techniques (random access) and scheduling.

14.1 Multiuser Channels: Broadcast and Multiple Access

A multiuser channel refers to any channel which must be shared among multiple users. There are two
different types of multiuser channels: the broadcast channel and the multiple access channel, which are
illustrated in Figure 14.1. A broadcast channel has one transmitter sending to many receivers, and thus
the bandwidth and power of the transmitter must be divided accordingly. Examples of broadcast channels
include all radio and television transmissions, the downlink (satellite-to-earth station) of a satellite system,
and the base station-to-mobile transmission of a cellular system. A multiple access channel has many
transmitters sending signals to one receiver. The transmit power for each of the transmitters may vary,
but the receiver bandwidth must be divided among the different users. Examples of multiple access
channels include an Ethernet connected to many computers, standard telephone lines (which are time
multiplexed between many voice signals), and the mobile-to-base station transmission of cellular systems.
The goal of multiuser communications is to utilize the limited system resources (power and bandwidth)
in an efficient manner while creating minimal (no) interference between users.

The most important system resource to be divided is the signal bandwidth, since the bandwidth
is assigned by the FCC, and is usually scarce (or expensive). The bandwidth is typically divided into
channels using a channelization method based on time, frequency, or code division, discussed in more
detail below. When dedicated channels are allocated to users it is often called multiple access: since
voice signals require a dedicated channel, multiple access is the common model for channel allocation in
telephony systems. Bandwidth sharing for users with bursty transmissions generally use some form of
random channel allocation which does not guarantee channel access. Bandwidth sharing using random
channel allocation is called random multiple access or simply random access. In general, the choice of
whether to use multiple access or random access, and which channelizaton technique to use for each access
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Broadcast Channel Multiple Access Channel

Figure 14.1: Broadcast and Multiple Access Channels.

type, will depend on the traffic characteristics of the system, the state of current access technology, and
compatibility with other systems.

14.2 Multiple Access

Multiple access techniques use a channelization method to divide up the system resources and then assign
dedicated channels to users that access the system. The channels are created by an orthogonal or semi-
orthogonal division of the system resources. Channelization methods for multiple access can be applied to
either broadcast or multiple access channels, although the relative performance of the different bandwidth
division techniques are different for these two channel types. Methods to divide the spectrum include
frequency-division, time-division, code-division, and hybrid combinations of these methods. Code division
can use either orthogonal or semiorthogonal coding techniques. Theoretically, time-division frequency-
division, and orthogonal code division are equivalent for homogeneous users (equal power and bandwidth
requirements), since they all divide up the signal space orthogonally [1]. Thus, as we will see in Sections
14.3 and 14.4, the capacity region for all of these techniques is the same. These sections also demonstrates
that code division using semiorthogonal codes achieves higher user rates if multiuser detection is used.
However, if multiuser detection is not used, the achievable rates are lower than that of the other orthogonal
techniques. We now describe each of these division techniques in more detail. More thorough treatments
of channelization methods can be found in [2, 3] and the references therein.

14.2.1 Frequency Division

In frequency division, the bandwidth is divided into nonoverlapping channels. Each user is then assigned
a different channel for transmission and reception. In time division, time is divided into orthogonal time
slots, which are then allocated to the different users. The channels typically have a guard band between
then to compensate for imperfect filters, adjacent channel interference, and spectral spreading due to
Doppler. In frequency division the user channels are typically narrowband, so they experience flat fading
and do not require compensation techniques for ISI. Frequency-division is generally the simplest division
technique to implement, however it is rather inflexible. In particular, it is difficult to allocate multiple
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channels on demand to a single user, since it requires simultaneous demodulation of multiple narrowband
channels. Frequency division is used in most analog cellular systems, and is part of the standard. In
some sense, all systems can be considered to use frequency division, since they are only allocated a finite
amount of bandwidth.

14.2.2 Time-Division

In time-division, time is divided into orthogonal time slots, and each user is assigned a cyclically-repeating
timeslot for transmission, and another one for reception. Time-division is often combined with frequency
division, as in the GSM standard. Since each user occupies a cyclically-repeating timeslot, transmission
is not continuous. Therefore, digital transmission techniques which allow for buffering are required. The
fact that transmission is not continuous makes handoff simpler, since the handoff can be done during
the timeslots occupied by other users. In addition, the channel can be sensed by the transmitter during
idle times, which allows the mobile to assist in determining which base station it should be handed off
to. One difficulty of using time-division in the multiple access channel is synchronization. Since different
users in the multiple access channel have different time delays, the timeslots must be synchronized so
that they remain orthogonal after these respective delays. The user channels associated with a time-
division system can be wideband or narrowband depending on the total system bandwidth and whether
or not frequency-division is also used. If the channels are wideband, then typically some form of ISI
compensation is required. For example, in the IS-54 standard, the channels are roughly 30KHz, and no
equalization is used. Conversely, in GSM, the channels are roughly 200KHz, and equalization is required
for acceptable performance.

14.2.3 Code-Division

In code-division, time and bandwidth are used simultaneously by different users, modulated by orthogonal
or semi-orthogonal codes. The receiver then uses the code structure to separate out the different users.
One of the big advantages of spread spectrum is that little dynamic coordination of users in time or
frequency is required, since the users can be separated by the code properties alone. In addition, since
time and frequency division carve up time and bandwidth in N orthogonal pieces, there is a hard limit
of N on how many users can simultaneously occupy the system. This is also true for code-division using
orthogonal codes. However, if semi-orthogonal codes are used, the number of users is interference limited.
Specifically, there is no hard limit on how many users can simultaneously share the channel. However,
because semi-orthogonal codes can cause mutual interference to other users sharing the same bandwidth,
the more users that are packed into the same channel, the higher the level of interference, which degrades
the performance of all the users. Moreover, on multiple access channels, a semiorthogonal code-division
system requires power control to compensate for the near-far problem. The near-far problem arises
because users modulating their signal with different spreading codes interfere with each other. Suppose
that one user is very close to his base station, and another user very far away. If both users transmit at
the same power level, then the interference from the close user will swamp the signal from the far user.
Thus, power control is used on all users such that their received signal powers are roughly the same. This
form of power control, which essentially inverts any attenuation and/or fading on the channel, causes
each interferer to contribute an equal amount of power, thereby eliminating the near-far problem.

Code-division is the most complex bandwidth division technique due to code synchronization re-
quirements and power control. Code division for direct-sequence spread spectrum was discussed in the
previous chapter. Although code-division with multiuser detection does not require power control, re-
ceiver complexity is significantly increased when simultaneous detection of all users is required. Moreover,
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the detection scheme must have a low probability of bit error, since bits that are incorrectly detected
are subtracted from the signals of other users, which may cause them to be decoded in error as well. A
similar feedback error problem is found in decision-feedback equalizers.

14.2.4 Standards Debate

Commercially, the primary competing standards in the U.S. for cellular and PCS multiple access are
frequency-division (IS-54), spread spectrum code-division (IS-95), or a combination of time- division and
slow frequency hopping (GSM). The spread spectrum systems do not currently use multiuser detection,
and therefore they require stringent power control to maintain a constant received signal power at the
receiver for each of the users. If this constant power is not maintained, co-channel interference from
strong signals will degrade the quality of other signals (the near-far problem). Stringent power control
is difficult to maintain in a fading environment, and is one of the major challenges of spread spectrum
multiple access.

The debate among cellular and personal communication standards committees and equipment providers
over which approach to use has led to countless analytical studies claiming superiority of one technique
over the other [4, 5, 6]. In many cases the a priori assumptions used in these analyses bias the results in
favor of one technique over the other alternatives; usually the technique that is of some economic interest
to the authors of the study.

This debate about multiple access was primarily for voice systems. Data and mixed media systems
pose different challenges, and analysis based on multiple access for voice systems is not necessarily valid
for data and multimedia systems. The best multiple or random access technique in this case will depend
on the traffic statistics.

14.3 Broadcast Channel Capacity Region

When several users share the same channel, the channel capacity can no longer be characterized by a
single number. At the extreme, if only one user occupies the channel then the single-user capacity results
of the previous section apply. However, since there is an infinite number of ways to “divide” the channel
between many users, the multiuser channel capacity is characterized by a rate region, where each point
in the region is a vector of achievable rates that can be maintained by all the users simultaneously. The
union of all achievable rate vectors is called the capacity region of the multiuser system.

In this section we analyze the capacity region of a broadcast channel with AWGN and with fading.
We begin by first reviewing results from [?] for the AWGN broadcast channel capacity region using su-
perposition code-division with successive interference cancellation, time-division, and frequency-division.
We then extend the code-division analysis to direct sequence spread spectrum for both orthogonal and
nonorthogonal codes, and obtain the corresponding capacity regions both with and without interference
cancellation. We then extend these results to fading broadcast channels.

We will see that the maximum capacity region is achieved using superposition code-division with
interference cancellation. In addition, spread spectrum code division with successive interference can-
cellation has a capacity penalty relative to superposition coding which increases with spreading gain.
Finally, spread spectrum with orthogonal code division can achieve a subset of the time-division and
frequency-division capacity regions, but spread spectrum with nonorthogonal coding and no interference
cancellation is inferior to all the other spectrum-sharing techniques.
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14.3.1 The AWGN Broadcast Channel Model

The broadcast channel consists of one transmitter sending independent information to different receivers
over a common channel. Thus, it does not model a typical FM radio or TV broadcast channel, where the
same signal is received by all users. The capacity region of the broadcast channel characterizes the rates
at which information can be conveyed to the different receivers simultaneously. We only consider capacity
regions for the two-user broadcast channel, since the general properties and the relative performance of
the different spectrum-sharing techniques are the same when the number of users is increased [?]. That is
because the transmit distribution for each user which achieves the multiuser capacity region is Gaussian
[?], so interference from other users is accurately modeled as Gaussian noise even for a small number of
interferers.

We will use the following notation. The two-user broadcast channel has one transmitter and two
distant receivers receiving data at rate Ri, i = 1, 2. Each receiver has front-end AWGN of noise density
ni, i = 1, 2, and we arbitrarily assume n1 ≤ n2. We denote the transmitter’s total average power and
bandwidth by S and B, respectively.

If the transmitter allocates all the power and bandwidth to one of the users, then clearly the other
user will have a rate of zero. Therefore, the set of simultaneously achievable rates (R1, R2) includes the
pairs (C1, 0) and (0, C2), where

Ci = B log
[
1 +

S

niB

]
. (14.1)

These two points bound the broadcast capacity region. We now consider rate pairs in the interior of the
region, which are achieved using more equitable methods of dividing the system resources.

14.3.2 Capacity Region in AWGN under TD, FD, and CD

In time-division, the transmit power S and bandwidth B are allocated to user 1 for a fraction τ of the
total transmission time, and then to user 2 for the remainder of the transmission. This time-division
scheme achieves a straight line between the points C1 and C2, corresponding to the rate pairs{⋃

(R1 = τC1, R2 = (1 − τ)C2) ; 0 ≤ τ ≤ 1
}
. (14.2)

This equal-power time-division capacity region is illustrated in Figures 14.3 and 14.4. In these figures,
n1B and n2B differ by 3dB and 20dB, respectively. This dB difference is a crucial parameter in comparing
the relative capacities of the different spectrum-sharing techniques, as we discuss in more detail below.

If we also vary the average transmit power of each user then we can achieve a larger capacity region.
Let S1 and S2 denote the average power allocated to users 1 and 2 over their respective time slots.
The average power constraint then becomes τS1 + (1 − τ)S2 = S. The capacity region with this power
allocation is then{⋃(

R1 = τB log
[
1 +

S1

n1B

]
, R2 = (1 − τ)B log

[
1 +

S2

n2B

])
; τS1 + (1 − τ)S2 = S, 0 ≤ τ ≤ 1

}
.

(14.3)
We will see in the following section that the rate region defined by (14.3) is the same as the frequency-
division capacity region.

In frequency-division the transmitter allocates Si of its total power S and Bi of its total bandwidth
B to user i. The power and bandwidth constraints require that S1 + S2 = S and B1 +B2 = B. The set
of achievable rates for a fixed frequency division (B1, B2) is thus{⋃(

R1 = B1 log
[
1 +

S1

n1B1

]
, R2 = B2 log

[
1 +

S2

n2B2

])
; S1 + S2 = S

}
. (14.4)
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It was shown by Bergmans [?] that, for n1 strictly less than n2 and any fixed frequency division (B1, B2),
there exists a range of power allocations {S1, S2 : S1 + S2 = S} whose corresponding rate pairs exceed a
segment of the equal-power time-division line (14.2).

The frequency-division rate region is defined as the union of fixed frequency-division rate regions
(14.4) over all bandwidth divisions:{⋃(

R1 = B1 log
[
1 +

S1

n1B1

]
, R2 = B2 log

[
1 +

S2

n2B2

])
; S1 + S2 = S, B1 +B2 = B

}
. (14.5)

It was shown in [?] that this capacity region exceeds the equal-power time-division rate region (14.2).
This superiority is indicated by interpolating the fixed frequency-division regions in Figures 14.3 and
14.4, although it is difficult to see in Figure 14.3, where the users have a similar received SNR. In fact,
when n1 = n2, (14.5) reduces to (14.2) [?]. Thus, optimal power and/or frequency allocation is more
beneficial when the users have very disparate channel quality.

Note that the rate region for time-division with unequal power allocation given by (14.3) is the same
as the frequency-division rate region (14.5). This is seen by letting Bi = τiB and σi = τiSi in (14.3),
where τ1 = τ and τ2 = 1−τ . The power constraint then becomes σ1+σ2 = S. Making these substitutions
in (14.3) yields{⋃(

R1 = B1 log
[
1 +

σ1

n1B1

]
, R2 = B2 log

[
1 +

σ2

n2B2

])
; σ1 + σ2 = S

}
. (14.6)

Comparing this with (14.4) we see that with appropriate choice of Si and τi, any point in the frequency-
division rate region can also be achieved through time-division with unequal power allocation.

Superposition coding with successive interference cancellation, described in more detail in [?], is a
multiresolution coding technique whereby the user with the more favorable channel can distinguish the fine
resolution of the received signal constellation, while the user with the worse channel can only distinguish
the constellation’s coarse resolution. An example of a two-level superposition code constellation taken
from [?] is 32-QAM with embedded 4-PSK, as shown in Figure 14.2. In this example, the transmitted
constellation point is one of the 32-QAM signal points chosen as follows. The user with the worse SNR
provides 2 bits to select one of the 4-PSK superpoints. The user with the better SNR provides 3 bits to
select one of the 8 constellation points surrounding the selected superpoint. After transmission through
the channel, the user with the better SNR can easily distinguish the quadrant in which the constellation
point lies. Thus, the 4-PSK superpoint is effectively subtracted out by this user. However, the user
with the worse channel cannot distinguish between the 32-QAM points around its 4-PSK superpoints.
Thus, the 32-QAM modulation superimposed on the 4-PSK modulation appears as noise to this user.
These ideas can be easily extended to multiple users using more complex signal constellations. Since
superposition coding achieves multiple rates by expanding its signal constellation, it does not typically
require bandwidth expansion.

The two-user capacity region using superposition coding and successive interference cancellation was
derived in [?] to be the set of rate pairs{⋃(

R1 = B log
[
1 +

S1

n1B

]
, R2 = B log

[
1 +

S2

n2B + S1

])
; S1 + S2 = S

}
. (14.7)

The intuitive explanation for (14.7) is the same as for the example discussed above. Since n1 < n2, user 1
correctly receives all the data transmitted to user 2. Therefore, user 1 can decode and subtract out user
2’s message, then decode its own message. User 2 cannot decode the message intended for user 1, since
it has a less-favorable channel; thus, user 1’s message, with power S1, contributes an additional noise
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32−QAM

4−PSK Superpoint

Figure 14.2: 32-QAM with embedded 4-PSK

term to user 2’s received message. This same process is used by the successive interference canceller in
spread spectrum systems [?]. However, it is important to mention that although successive interference
cancellation achieves the capacity region (14.7), it is not the best method to use in practice. The capacity
analysis assumes perfect signal decoding, whereas real systems exhibit some decoding error. This error
leads to decision-feedback errors in the successive interference cancellation scheme. Thus, cancellation
methods which mitigate the effect of decision errors work better in practice than successive cancellation.

The rate region defined by (14.7) was shown in [?] to exceed the regions achievable through either
time- or frequency-division, when n1 < n2. Moreover, it was also shown in [?] that this is the maximum
achievable set of rate pairs for any type of coding and spectrum sharing, and thus (14.7) defines the
capacity region. However, if the users all have the same SNR, then this capacity region collapses to the
equal-power time-division line (14.2). Thus, when n1 = n2, all the spectrum-sharing methods have the
same rate region.

Code-division can also be implemented using direct-sequence spread spectrum, as discussed in Chap-
ter 12.5. As we discussed there, spread spectrum multiplies the modulated data signal by a spreading
code, which increases the transmit signal bandwidth by a factor G called the spreading gain. For orthog-
onal spreading codes, the cross correlation between the respective codes is zero, and these codes require a
spreading gain of N to produce N orthogonal codes. For a total bandwidth constraint B, the information
bandwidth of each user’s signal with these spreading codes is thus limited to B/N . The two-user rate
rate region with these spreading codes is then{⋃(

R1 =
B

2
log

[
1 +

S1

n1B/2

]
, R2 =

B

2
log

[
1 +

S2

n1B/2

])
; S1 + S2 = S

}
. (14.8)

Comparing (14.8) with (14.4) we see that code-division with orthogonal coding is the same as fixed
frequency-division with the bandwidth equally divided (B1 = B2 = B/2). From (14.6), time-division
with unequal power allocation can also achieve all points in this capacity region. Thus, orthogonal code-
division with Hadamard-Walsh functions achieves a subset of the time-division and frequency-division
capacity regions. More general orthogonal codes are needed to achieve the same region as these other
techniques.

We now consider spread spectrum with nonorthogonal spreading codes. As discussed in the previous
chapter, these codes are commonly generated using maximal length shift registers, which yield a code
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cross correlation of approximately 1/G. Thus, interference between users is attenuated by a factor of G.
Since the signal bandwidth is also increased by this factor, the two-user rate region achievable through
spread-spectrum using maximal length spreading codes and successive interference cancellation is given
by {⋃(

R1 =
B

G
log

[
1 +

S1

n1B/G

]
, R2 =

B

G
log

[
1 +

S2

n2B/G+ S1/G

])
; S1 + S2 = S

}
. (14.9)

By the convexity of the log function, the rate region defined by (14.9) for G > 1 is smaller than the rate
region (14.7) obtained using superposition coding, and the degradation increases with increasing values
of G. This implies that for nonorthogonal coding, the spreading gain should be minimized in order to
maximize capacity.

With maximal length spreading coding and no interference cancellation, the receiver treats all signals
intended for other users as noise, resulting in the rate region{⋃(

R1 =
B

G
log

[
1 +

S1

n1B/G+ S2/G

]
, R2 =

B

G
log

[
1 +

S2

n2B/G+ S1/G

])
; S1 + S2 = S

}
. (14.10)

Again using the log function convexity, G = 1 maximizes this rate region, and the rate region decreases
as G increases. Moreover, by taking the second partial derivatives in (14.10), we get that for any G ≥ 1,

∂2R2

∂2R1
=
∂R1

∂α1

∂2R2

∂2α1
− ∂R2

∂α1

∂2R1

∂2α1
≥ 0. (14.11)

Thus, the rate region for nonorthogonal coding without interference cancellation (14.18) is bounded by a
convex function with end points C1 and C2, as shown in Figures 14.3 and 14.4. Therefore, the capacity
region for nonorthogonal code-division without interference cancellation will lie beneath the regions for
time-division and frequency-division, which are bounded by concave functions with the same endpoints.

While the orthogonality of time-division and frequency-division is relatively robust against small
multipath delays introduced by the channel, multipath delays bigger than a chip time can compromise
the orthogonality of orthogonal spread spectrum codes. This loss of orthogonality causes interference
noise between users, so the rate region becomes{⋃(

R1 =
B

G
log

[
1 +

S1

n1B/G+ S2/G′

]
, R2 =

B

G
log

[
1 +

S2

n2B/G+ S2/G′

])
; S1 + S2 = S

}
,

(14.12)
where 1/G′ equals the code cross correlation with multipath. If G′ ≈ G then the rate region defined by
(14.12) is approximately the same as (14.10). As the multipath effect diminishes, G′ → ∞ and the region
converges to (14.8). A deeper discussion of multipath impact on spread spectrum coding and techniques
to improve orthogonality in the presence of multipath can be found in Section 12.5

The rate regions for equal-power time-division (14.2), frequency-division (14.4), orthogonal code-
division (14.8), and nonorthogonal code-division with (14.7) and without (14.10) interference cancellation
are illustrated in Figures 14.3 and 14.4, where the SNR between the users differs by 3dB and 20dB,
respectively. For the calculation of (14.10) we assume code-division through superposition coding with
G = 1: spread spectrum code-division with larger values of the spreading gain will result in a smaller
rate region.

14.3.3 Fading Broadcast Channel Capacity

We now combine the capacity analysis in §?? for the single-user fading channel with the capacity region
analysis in §?? to obtain the capacity region of the fading broadcast channel. The two-user broadcast

362

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


0

0

(Kbps)
R2

B=100KHz

100 200 300

100

200

2n  B=4dbW.  

S=10dbW

1n  B=1dbW.  

Equal power T.D. (12).

C.D. with Interference Cancellation (17).

C.D. without Interference Cancellation (20).
Orthogonal C.D. or F.D. with B1=B2=.5B (18).

1R  (Kbps)

Fixed F.D. with B1=.25B and B2=.75B (14).

Fixed F.D. for B1=.75B and B2=.25B (14).

1C

2C

Figure 14.3: Two-User Capacity Region: 3dB SNR Difference.
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Figure 14.4: Two-User Capacity Region: 20dB SNR Difference.
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channel with fading and AWGN has one transmitter with average power S and bandwidth B and two
receivers with noise density Nj and time-varying received SNR γj [i] = Sgj [i]/(NjB), j = 1, 2. Let
nj [i] = Nj/gj [i], so γj [i] = S/(nj [i]B). We assume that nj [i] is known to the jth receiver at time i and
that both n1[i] and n2[i] are known to the transmitter at time i. Thus, the transmitter can vary its power
S[i] relative to n1[i] and n2[i], subject only to the average power constraint S. For frequency-division, it
can also vary the bandwidth Bj [i] allocated to each user, subject to the constraint B1[i] +B2[i] = B for
all i.

ince time-division allocates orthogonal time slots to each user, the two-user channel with time-division
reduces to two orthogonal time-varying single-user channels. Thus, we can apply the single-user capacity
results in §?? to each of the two channels. This yields the rate region{⋃

(R1 = τC1[S,B], R2 = (1 − τ)C2[S,B]) ; 0 ≤ τ ≤ 1
}
, (14.13)

where Ci[S,B], i = 1, 2, is given by (??), (??), or (??), depending on the power adaptation strategy.
Clearly, the capacity region is achieved using (??) for Ci[S,B] with the corresponding power adaptation
(??). If the average power allocated to each user is different, the capacity region becomes{⋃

(R1 = τC1[S1, B], R2 = (1 − τ)C2[S2, B]) ; τS1 + (1 − τ)S2 = S, 0 ≤ τ ≤ 1
}
. (14.14)

As for the AWGN channel, the unequal-power time-division rate region (14.14) is equivalent to the fixed
frequency-division rate region (14.15) obtained below.

Fixed frequency division divides the total channel bandwidth B into nonoverlapping segments of
width B1 and B2, which also reduces the two-user channel to independent single-user channels. As in the
time-division case, we can thus apply the results of §?? to each channel independently, yielding the fixed
frequency-division rate region{⋃

(R1 = C[S1, B1], R2 = C[S2, B2]) ; S1 + S2 = S
}
. (14.15)

Again, C[Si, Bi] is given by (??), (??), or (??), with (??) achieving the maximum capacity region. Setting
B1 = τB and S1 = τS in (14.15) and comparing with (14.14) shows the equivalence of unequal-power
time-division and fixed frequency-division on the fading channel. It is clear that the equal-power time-
division capacity region (14.13) will exceed the fixed frequency-division rate region over some range of
power allocations {S1, S2 : S1 + S2 = S}, in particular when all of the power is allocated to one of
the frequency bands. Suppose, however, that both the power and the bandwidth partition vary at each
transmission based on the instantaneous noise densities n1[i] and n2[i]. Clearly the resulting rate region
will exceed both fixed frequency-division and time-division, which fixes the allocation of these resources
over all time. The rate region for this variable power and bandwidth allocation scheme is{⋃(

R1 =
∫
k
C1,k[S1,k, B1,k]πk, R2 =

∫
k
C2,k[S2,k, B2,k]πk

)
;B1,k +B2,k = B,

∫
k
(S1,k + S2,k)πk = S

}
,

(14.16)
where πk denotes the joint noise density distribution πk = p(n1[i] = n1,k, n2[i] = n2,k), Sj,k and Bj,k
are the bandwidth and power allocated to user j when nj [i] = nj,k, and Cj,k[Sj,k, Bj,k] = Bj,k log(1 +
Sj,k/(nj,kBj,k)). To determine the boundary region of (14.16), both the power and bandwidth allocations
must be optimized jointly over time, so the two users are no longer independent. Finding this boundary
region requires an exhaustive search or a multidimensional optimization over time subject to the band-
width and power constraints. We do not evaluate this region in the numerical results presented below.
However, this capacity region is bounded above by the capacity region for superposition coding with
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successive decoding and bounded below by the union of all fixed frequency-division regions, which are
evaluated in Figure 14.5.

The idea of reallocating bandwidth and power as the channel varies is closely related to dynamic
channel allocation, where channel allocation is based on the noise (and interference) levels in a particular
frequency band [?, ?]. The frequency allocation of (14.16) suggests that instead of using a threshold level
to determine which user should occupy the channel, the channel should be allocated to the user which
gets the most capacity from it. Similar ideas are currently being investigated for admission control [?].

We now consider code division techniques. We first study superposition coding with successive
interference cancellation where, at each transmission, the signal constellation is optimized relative to the
instantaneous noise densities n1[i] and n2[i]. In particular, the user with the lower noise density nj [i] at
time i will subtract the interference caused by the other user. The rate region is thus the average of the
rate regions in AWGN weighted by the joint probability of the noise densities:{⋃(

R1 =
∫
k
B log

[
1 +

S1,k

n1,kB + S2,k1[n1,k ≥ n2,k]

]
πk, R2 =

∫
k
B log

[
1 +

S2,k

n2,kB + S1,k1[n2,k > n1,k]

]
πk

)
;

∫
k
(S1,k + S2,k)πk = S

}
, (14.17)

where 1[·] denotes the indicator function (1[x] = 1 if x is true and zero otherwise). Since superposition
coding with interference cancellation has a larger rate region than time- and frequency-division on the
AWGN channel, we expect this to be true for the fading channel as well. Indeed, consider any rate
point in the frequency-division capacity region (14.16). Associated with that point will be a set of
frequency divisions (B1,k, B2,k) and a set of transmit power values (S1,k, S2,k) corresponding to each noise
pair (n1,k, n2,k). Let Sk = S1,k + S2,k. From §??, for the broadcast channel with noise density values
(n1,k, n2,k) there exists a superposition code with total power Sk that has a larger capacity region than
frequency-division. Since we can find such a dominating code for all pairs of noise density values, the
weighted integral of the superposition rates over all joint noise density pairs will exceed the frequency-
division capacity region of (14.16).

The rate region for superposition coding without successive decoding is given by{⋃(
R1 =

∫
k
B log

[
1 +

S1,k

n1,kB + S2,k

]
πk, R2 =

∫
k
B log

[
1 +

S2,k

n2,kB + S1,k

]
πk

)
;

∫
k
(S1,k + S2,k)πk = S

}
. (14.18)

Since the capacity region corresponding to each k term in the integral (14.18) is bounded by a convex
function, the resulting rate region will also be bounded by a convex function. Thus, both the equal-power
time-division rate region (14.13) and the frequency-division rate region (14.16), which are bounded by
concave functions with the same endpoints, will have larger rate regions than that of (14.18).

Obtaining the code division capacity region boundaries either with or without interference cancella-
tion requires either an exhaustive search or a two-dimensional optimization of the power over all time.
However, we can obtain a simple lower bound for these boundaries by keeping the transmit power con-
stant. This yields a point in the capacity region which is clearly beneath rate vectors obtained with
optimal power adaptation. The resulting capacity region lower bound for Rayleigh fading is shown in
Figure 14.5, along with the time-division and fixed frequency-division rate regions, given by (14.13) and
(14.15 ) respectively. From this figure we see that keeping the transmit power constant is clearly sub-
optimal, since the equal-power time-division rate region exceeds the region obtained by superposition
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code-division with interference cancellation near the region end points. In light of this observation, it is
interesting to recall our remark in §?? that keeping the transmit power constant has a negligible impact
on the capacity of a single-user fading channel. We see now that the effect of power adaptation is much
more pronounced in the multiuser case, where power adaptation impacts the interference on other users.

n  B=1dbW.  

100 200 300

Orthogonal C.D. and F.D. for B1=B2=B/2.

100

200

0

0 (Kbps)
R1

(Kbps)
R2

B=100KHz

n  B=4dbW.  

S=10dbW

1

C.D. with I.C (27) and Constant Power.

C.D. without I.C. (28) and with Constant Power.

Fixed F.D. for B1=.25B,B2=.75B (25).

F.D. for B1=.75B and B2=.25B (25).

Equal power T.D. (23).

2

Figure 14.5: Two-User Capacity Region in Rayleigh Fading.

If we compare Figures 14.3 and 14.5 we see that fading decreases the capacity region, even with
optimal power and bandwidth, timeslot, or code adaptation relative to the fading. The fact that fading
reduces the capacity region is not surprising, since the single-user fading channel capacity evaluated in
Chapter 4 is less than the capacity of an AWGN channel with the same average SNR.

To summarize, the time-varying capacity region is obtained by taking a weighted average of time-
invariant capacity regions associated with the different noise density pairs, with the weights determined
by the joint probability distribution of these pairs. Numerical evaluation of the capacity regions defined
by (14.13) and (14.15) is straightforward using the methods defined in §??. These regions have the
same general shape as in Figures 14.3 and 14.4, although they are smaller for the fading channel than
for the AWGN channel. Evaluation of (14.16), (14.17), and (14.18) requires an exhaustive search or a
difficult multidimensional optimization over time. A lower bound for (14.16), the frequency-division rate
region with optimal power and bandwidth adaptation, is obtained by maximizing over all fixed frequency-
division rate regions (14.15). A lower bound for the code-division rate region with optimal power and
transmit constellation adaptation is obtained by keeping the transmit power S1,k = S2,k = S constant in
(14.17) and (14.18).
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14.4 Multiple Access Channel Capacity Region

14.4.1 The AWGN Multiple Access Channel

The multiaccess channel consists of several transmitters, each with power Pi, sending to a receiver which
is corrupted by AWGN of power n. If we denote the ith transmitted signal by Xi, then the received
signal is given by Y =

∑K
i=1Xi+N , where N is an AWGN sample of power n. The two-user multiaccess

capacity region was determined by Cover to be the closed convex hull of all vectors (R1, R2) satisfying
[?]

Ri ≤ B log
[
1 +

Pi
nB

]
,

R1 +R2 ≤ B log
[
1 +

P1 + P2

nB

]
. (14.19)

This region is shown in Figure 14.6, where Ci and C∗
i are given by

Ci = B log
[
1 +

Pi
nB

]
, i = 1, 2, (14.20)

C∗
1 = B log

[
1 +

P1

nB + P2

]
, (14.21)

and
C∗

2 = B log
[
1 +

P2

nB + P1

]
. (14.22)

R2

C1

R1

C2
*

C1
*

C2

Superposition Coding

Frequency Division

Time−Sharing

Superposition without
Successive Decoding

Coding with Time Sharing
or Rate Splitting

Figure 14.6: Multiaccess Channel Rate Region.

The point (C1, 0) is the achievable rate vector when transmitter 1 is sending at its maximum rate
and transmitter 2 is silent, and the opposite scenario achieves the rate vector (0, C2). The corner points
(C1, C

∗
2) and (C∗

1 , C2) are achieved using the successive decoding technique described above for superpo-
sition codes. Specifically, let the first user operate at the maximum data rate C1. Then its signal will
appear as noise to user 2; thus, user 2 can send data at rate C∗

2 which can be decoded at the receiver with
arbitrarily small error probability. If the receiver then subtracts out user 2’s message from its received
signal, the remaining message component is just users 1’s message corrupted by noise, so rate C1 can be
achieved with arbitrarily small error probability. Hence, (C1, C

∗
2 ) is an achievable rate vector. A similar

argument with the user roles reversed yields the rate point (C∗
1 , C2).
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Time division between the two transmitters operating at their maximum rates, given by (14.20),
yields any rate vector on the straight line connecting C1 and C2. With frequency division, the rates
depend on the fraction of the total bandwidth that is allocated to each transmitter. Letting B1 and B2

denote the bandwidth allocated to each of the two users, we get the rate region (R1, R1) with

Ri ≤ Bi log
[
1 +

Pi
nBi

]
. (14.23)

Clearly this region dominates time division, since setting B1 = τB and B2 = (1 − τ)B in (14.23) yields
a higher rate region (R1, R1) than (τC1, (1 − τ)C2). Varying the values of B1 and B2 subject to the
constraint B1 + B2 = B yields the frequency division curve shown in Figure 14.6. It can be shown [?]
that this curve touches the rate region boundary at one point, and this point corresponds to the rate
vector which maximizes the sum R1 + R2. To achieve this point, the bandwidths B1 and B2 must be
proportional to their corresponding powers P1 and P2.

As with the broadcast multiuser channel, we can achieve the same rate region with time division as
with frequency division by efficient use of the transmit power. If we take the constraints P1 and P2 to
be average power constraints, then since user i only uses the channel τi percent of the time, its average
power over that time fraction can be increased to Pi/τi. The rate region achievable through time division
is then given by (R1, R2) with

Ri ≤ τiB log
[
1 +

Pi
nτiB

]
, i = 1, 2, (14.24)

and substituting Bi
4
= τiB in (14.24) yields the same rate region as in (14.23).

Superposition codes without successive decoding can also be used. With this approach, each trans-
mitter’s message acts as noise to the others. Thus, the maximum achievable rate in this case cannot
exceed (C∗

1 , C
∗
2 ), which is clearly dominated by frequency division for some bandwidth allocations, in

particular the allocation that intersects the rate region boundary. More work is needed to determine
when, if ever, this suboptimal technique achieves better rates than time or frequency division. Clearly,
however, C∗

1 → C1 as R2 → 0 or, equivalently P2 → 0. Similarly, C∗
2 → C2 as R1 → 0. Based on this

observation it is clear that the suboptimality of superposition codes without successive decoding is most
pronounced when both users transmit their full power.

14.4.2 Fading Multiaccess Channels

The two-user fading multiaccess channel has two transmitters with average power P1 and P2, respectively,
and one receiver with bandwidth B and AWGN of time-varying power n(t). Let πk = p(n(t) = k) We also
assume that transmitter i tracks ni(t), and the receiver tracks both n1(t) and n2(t). The transmitters
may vary their instantaneous transmit power Pi(t) relative to n(t), subject only to the average power
constraint Pi(t) = Pi for i = 1, 2.

We first consider spectrum sharing through time division. With this technique we can achieve any
point (R1, R2) =

∫
k πk (τCk(Φk1), (1 − τ)Ck(Φk2)), where

Ck(Φki
)
4
= B log

[
1 +

Φki

nB

]
, (14.25)

and Φki
, the power allocated to the ith user when n(t) = n, is subject to the average power constraint∫

k πkΦki
= Pi. The Φki

s can be optimized independent of each other, since under time division the two
users are orthogonal. Optimizing these power allocations subject to the power constraint therefore defines
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a straight line connecting the points C1(P1) and C2(P2), where

Ci(Pi) = max
{Φki

:
∫

k
πkΦki

=Pi}

∫
k
πkCk(Φki

). (14.26)

Fixed frequency division partitions the total bandwidth B into nonoverlapping segments B1 and B2,
which are then allocated to the respective transmitters. Since the bandwidths are separate, the users
are independent, and they can allocate their time-varying power independently, subject only to the total
power constraint Pi. The fixed frequency division rate region (R1, R2) thus satisfies

Ri ≤ max
Φki

∫
πkCk(Φki

, Bi), (14.27)

where
Ck(Φki

, Bi) = Bi log
[
1 +

Φki

nBi

]
, (14.28)

and the Φnis satisfy the power constraint
∫
k πkΦki

= Pi.
It can be shown [?] that fixed frequency division dominates time division. and superposition coding

dominates both. Thus, as for the broadcast channel, the relative performance of the different spectrum
sharing techniques is the same in AWGN and in fading, although the shape of the capacity region is
different.

14.5 Random Access

Given a channelization scheme, each user can be assigned a different channel for some period of time.
However, most data users do not require continuous transmission, so dedicated channel assignment can
be extremely inefficient. Moreover, most systems have many more total users (active plus idle users) than
channels, so at any given time channels can only be allocated to users that need them. Random access
strategies are used is such systems to assign channels to the active users.

Random access techniques were pioneered by Abramson with the Aloha protocol [7]. In the ALOHA
random access protocol, packets are buffered at each terminal and transmitted over a common channel
to a common hub or base station. In unslotted, or “pure” Aloha, no control is imposed on the channel to
synchronize transmission from the various users, and therefore the start times of packets from different
users in the network can be modeled as a Poisson point process. Should two users “collide,” they both
wait a random amount of time before retransmitting. The goal, of course, is to prevent the users from
colliding once again when they retransmit. Under these circumstances packets from different users will
be transmitted with a high probability of success if there is a light to moderate amount of traffic on
the network. As the traffic on the network increases the probability of a collision between packets from
different users increases.

In slotted Aloha, the users are further constrained by a requirement that they only begin transmitting
at the start of a time slot. The use of such time slots increases the maximum possible throughput of
the channel [8], but also introduces the need for synchronization of all nodes in the network, which can
entail significant overhead. Even in a slotted system, collisions occur whenever two or more users attempt
transmission in the same slot. Error control coding can result in correct detection of a packet even after
a collision, but if the error correction is insufficient then the packet must be retransmitted, resulting in
a complete waste of the energy consumed in the original transmission. A study on design optimization
between error correction and retransmission is described in [9].
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The pessimistic assumption that a collision results in the loss of two packets is usually made in the
analysis of an ALOHA channel. Using this assumption it is possible to show the maximum value of the
throughput in an ALOHA channel is about 18% of the peak data rate. In practice such channels are
usually sized to operate at about 10% of the peak data rate. Slotted ALOHA has roughly double this
peak data rate due the fact that a collision only causes the loss of a single packet.

Collisions can be reduced by Carrier Sense Multiple Access (CSMA), where users sense the channel
and delay transmission if they detect that another user is currently transmitting [8]. CSMA only works
when all users can hear each other’s transmissions, which is typically not the case in wireless systems
due to the nature of wireless propagation. This gives rise to the hidden terminal problem, illustrated in
Figure 14.7, where each node can hear its immediate neighbor but no other nodes in the network. In
this figure both node 3 and node 5 wish to transmit to node 4. Suppose node 5 starts his transmission.
Since node 3 is too far away to detect this transmission, he assumes that the channel is idle and begins
his transmission, thereby causing a collision with node 5’s transmission. Node 3 is said to be hidden
from node 5 since it cannot detect node 5’s transmission. Aloha with CSMA also creates inefficiencies
in channel utilization from the exposed terminal problem, also illustrated in Figure 14.7. Suppose the
exposed terminal in this figure - node 2 - wishes to send a packet to node 1 at the same time node 3 is
sending to node 4. When node 2 senses the channel it will detect node 3’s transmission and assume the
channel is busy, even though node 3 does not interfere with the reception of node 2’s transmission by
node 1. Thus node 2 will not transmit to node 1 even though no collision would have occured.

Exposed
Terminal

  Hidden
Terminal

1 2 3 4 5

Figure 14.7: Hidden and Exposed Terminals.

The collisions introduced by hidden terminals and inefficiencies introduced by exposed terminals are
often addressed by a four-way handshake prior to transmission, as in the 802.11 wireless LAN protocol
[10, 11]. However, this handshake protocol is based on single hop routing, and thus its performance in
multihop networks is suboptimal [12, 13]. Another technique to avoid hidden and exposed terminals is
busy tone transmission. In this strategy users first check to see whether the transmit channel is busy
by listening for a “busy tone” on a separate control channel [8]. There is typically not an actual busy
tone but instead a bit is set in a predetermined field on the control channel. This scheme works well
in preventing collisions when a centralized controller can be “heard” by users throughout the network.
In a flat network without centralized control, more complicated measured are used to ensure that any
potential interferer on the first channel can hear the busy tone on the second [14, 15]. Hybrid techniques
using handshakes, busy tone transmission, and power control are investigated in [15]. Note that while
the four-way handshake and busy tone transmission both reduce collisions due to the hidden terminal
problem, they tend to aggravate the exposed terminal problem, leading to less efficient utilization of the
available channels in the network. A solution to this problem is to have both transmitter and receiver
send busy tones [14].
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The throughput of a channel is not necessarily the most appropriate figure of merit. The throughput
of a channel is simply the fraction of time during which the channel can be used to transmit data. In some
cases, such as average power limited satellite channels or battery operated transmitters, the average data
rate of the channel for a fixed average transmitter power and a fixed bandwidth is a more appropriate
figure of merit. We can define such a figure of merit for multiple access channels, called the efficiency
of the channel, which takes into account the system resources of average power and bandwidth. The
efficiency of an ALOHA multiple access channel is the ratio of the ALOHA channel capacity to the
capacity of the continuous channel using the same average power and the same total bandwidth. When
these channel resources are taken into account the picture of ALOHA efficiency that emerges is much
different from that of ALOHA throughput. Specifically, the efficiency of an ALOHA channel approaches
one for the important case of small values of throughput and small values of the signal to noise power
ratio. In other words, under these conditions it is not possible to find a multiple access protocol which
has a higher capacity for a given value of average power and a given bandwidth.

By the end of 1996 ALOHA channels have been employed in a wide variety of connection free wireless
applications. Various forms of ALOHA channels are used as the signaling channel in all three major digital
cellular standards (IS-54, IS-95 and GSM). They are used in the ARDIS and RAM Mobitex packet radio
networks, in the Japanese Teleterminal network and in a variety of commercial campus networks, such as
the Multipoint mpNET and the ARIA System III. They are used in the request channel of the INMARSAT
maritime satellite network to allow tens of thousands of ship stations to request voice and telex capacity
and in more than 100,000 very small aperture earth stations (VSAT’s) now in operation.

All of these products are narrowband applications typically operating at about 10 Kbs. Conven-
tional first generation ALOHA channels cannot easily provide the much higher bandwidths required for
a broadband wireless data network to service a large number of users and the larger markets of interest
today. A conventional ALOHA channel cannot be easily implemented when the channel bandwidth is
much higher than this because of the demands this puts on the burst power output of the remote termi-
nals. Newer developments of second generation wideband versions of ALOHA, such as Spread ALOHA
Multiple Access (SAMA), are expected to change this situation in the future [16].

14.6 Scheduling

Random access protocols work well with bursty traffic where there are many more users than available
channels, yet these users rarely transmit. If users have long strings of packets or continuous stream
data, then random access works poorly as most transmissions result in collisions. Thus channels must
be assigned to users in a more systematic fashion by transmission scheduling. In scheduled access the
available bandwidth is channelized into multiple time, frequency, or code division channels. Each node
schedules its transmission on different channels in such a way as to avoid conflicts with neighboring nodes
while making the most efficient use of the available time and frequency resources. While there has been
much work on transmission scheduling, or channel assignment, in cellular systems [17], the centralized
control in these systems greatly simplifies the problem. Distributed scheduled access in ad hoc wireless
networks in general is an NP- hard problem [18]. Selman et al. have recently discovered that NP-hard
problems exhibit a rapid change in complexity as the size of the problem grows [19, 20]. The identification
of this “phase transition” provides an opportunity for bounding the complexity of problems like scheduled
access by staying on the good side of the phase transition.

Even with a scheduling access protocol, some form of ALOHA will still be needed since a predefined
mechanism for scheduling will be, by definition, unavailable at startup. ALOHA provides a means for
initial contact and the establishment of some form of scheduled access for the transmission of relatively
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large amounts of data. A systematic approach to this initialization that also combines the benefits of
random access for bursty data with scheduling for continuous data is packet reservation multiple access
(PRMA) [Goodman89]. PRMA assumes a slotted system with both continuous and bursty users (e.g.
voice and data users). Multiple users vie for a given time slot under a random access strategy. A successful
transmission by one user in a given timeslot reserves that timeslot for all subsequent transmissions by the
same user. If the user has a continuous or long transmission then after successfully capturing the channel
he has a dedicated channel for the remainder of his transmission (assuming subsequent transmissions are
not corrupted by the channel: this corruption causes users to lose their slots and they must then recontend
for an unreserved slot, which can entail significant delay). When this user has no more packets to transmit,
the slot is returned to the pool of available slots that users attempt to capture via random access. Thus,
data users with short transmissions benefit from the random access protocol assigned to unused slots,
and users with continuous transmissions get scheduled periodic transmissions after successfully capturing
an initial slot. A similar technique using a combined reservation and ALOHA policy is described in [11].

14.7 Power Control

Access protocols can be made more efficient and distributed by taking advantage of power control. Work
in this area has mainly focused on maintaining the SINR of each user sharing the channel above a given
threshold, which may be different for different users. Necessary and sufficient conditions to ensure that a
feasible set of transmit powers for all users exists under which these users can meet their threshold SINR
levels given the link gains between them are determined in [28]. Battery power for each user is minimized
by finding the minimum power vector within the feasible set. This algorithm can also be performed in a
distributed manner, which eliminates the need for centralized power control. Access to the system can be
based on whether the new user causes other users to fall below their SINR targets. Specifically, when a
new user requests access to the system, a centralized controller can determine if a set of transmit powers
exists such that he can be admitted without degrading existing users below their desired SINR threshold.
This admission can also be done using the distributed algorithm, where the new user gradually ramps
up his power, which causes interference to other existing users in the system. If the new user can be
accommodated in the system without violating the SINR requirements of existing users, then the power
control algorithms of the new and existing users eventually converge to the feasible power vector under
which all users (new and existing) meet their SINR targets. If the new user cannot be accommodated
then as he ramps up his power the other users will increase their powers to maintain their SINRs such
that the new user remains far from his SINR target. After some number of iterations without reaching
his target, the new user will either back off from the channel and try again later or adjust his SINR target
to a lower value and try again.

A power control strategy for multiple access that takes into account delay constraints is proposed and
analyzed in [28]. This strategy optimizes the transmit power relative to both channel conditions and the
delay constraint via dynamic programming. The optimal strategy exhibits three modes: very low power
transmission when the channel is poor and the tolerable delay large, higher power when the channel and
delay are average, and very high power transmission when the delay constraint is tight. This strategy
exhibits significant power savings over constant power transmission while meeting the delay constraints
of the traffic.
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[18] I. Csiszár and J. Kórner, Information Theory: Coding Theorems for Discrete Memoryless
Channels. New York: Academic Press, 1981.

[19] I. Csiszár and P. Narayan, The capacity of the Arbitrarily Varying Channel,” IEEE Trans.
Inform. Theory, Vol. 37, No. 1, pp. 18–26, Jan. 1991.

[20] J. Wolfowitz, Coding Theorems of Information Theory. 2nd Ed. New York: Springer-Verlag,
1964.

[21] A.J. Goldsmith and P.P. Varaiya, ”Capacity of fading channels with channel side information,”
IEEE Trans. Inform. Theory, pp. 1986-1992, Nov. 1997.

[22] R.J. McEliece and W. E. Stark, “Channels with block interference,” IEEE Trans. Inform.
Theory, Vol IT-30, No. 1, pp. 44-53, Jan. 1984.

[23] K. S. Gilhousen, I. M. Jacobs, R. Padovani, A. J. Viterbi, L. A. Weaver, Jr., and C. E. Wheat-
ley III, “On the capacity of a cellular CDMA system,” IEEE Trans. Vehic. Technol., Vol.
VT-40, No. 2, pp. 303–312, May 1991.

[24] P. Billingsley. Probability and Measure. 2nd Ed. New York: Wiley, 1986.

[25] A. Goldsmith and M Medard, “Capacity of time-varying channels with channel side informa-
tion,” IEEE Intl. Symp. Inform. Theory, pg. 372, Oct. 1996. Also submitted to the IEEE Trans.
Inform. Theory.

[26] M.-S. Alouini and A. Goldsmith, “Capacity of Rayleigh fading channels under different adaptive
transmission and diversity-combining techniques,” IEEE Transactions on Vehicular Technology,
pp. 1165 -1181, July 1999.

[27] E. Teletar, “Capacity of multi-antenna Gaussian channels,” AT&T Bell Labs Internal Tech.
Memo, June 1995.

[28] G. Foschini, “Layered space-time architecture for wireless communication in a fading environ-
ment when using multiple antennas,” Bell Labs Technical Journal, pp. 41-59, Autumn 1996.

[29] G. Foschini and M. Gans, “On limits of wireless communication in a fading environment when
using multiple antennas,” Wireless Personal Communications, pp. 311-335, March 1998.

[30] E. Visotsky and U. Madhow, “Space-time transmit precoding with imperfect feedback,” Proc.
Intl. Symp. Inform. Theory, June 2000.

[31] A. Narula, M. Lopez, M. Trott, G. Wornell, “Efficient use of side information in multiple-antenna
data transmission over fading channels,” IEEE JSAC, Oct. 1998.

[32] A. Narula, M. Trott, G. Wornell, “Performance limits of coded diversity methods for transmitter
antenna arrays,” IEEE Trans. Inform. Theory, Nov. 1999.

[33] S. Diggavi, “Analysis of multicarrier transmission in time-varying channels,” Proc. IEEE Intl.
Conf. Commun. pp. 1191–1195, June 1997.

376

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


Chapter 15

Cellular Systems and
Infrastructure-Based Wireless Networks

One of the biggest challenges in providing multimedia wireless services is to maximize efficient use of the
limited available bandwidth. Cellular systems exploit the power falloff with distance of signal propagation
to reuse the same frequency channel at spatially- separated locations. Specifically, in cellular systems a
given spatial area (like a city) is divided into nonoverlapping cells, as shown in Figure 15.1. Different
frequencies, timeslots, or codes are assigned to different cells. For time and frequency division, cells
operating on the same frequency or timeslot are spaced just far enough apart so that their mutual
interference is tolerable. In code-division the codes are reused every cell.
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Figure 15.1: Cellular System.
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In this chapter we first describe the basic design principles of cellular systems. We then describe a
capacity measure for cellular systems, the area spectral efficiency, and compute this efficiency for simple
cellular models.

15.1 Cellular System Design

For the cellular system shown in Figure 15.1 the central transmitter in each cell is connected to a base
station and switching office which act as a central controller. Allocation of channels is performed by this
centralized control function, as is the power control in CDMA systems. This controller also coordinates
handoff to a neighboring cell when the mobile terminal traverses a cell boundary. The handoff procedure
occurs when the base station in the originating cells detects the signal power of the mobile decreasing as
it moves towards a cell boundary. This causes the base station in the originating cell to query neighboring
cells in order to detect the destination base station. If the destination base station does not have any
available channels, the handoff call will be dropped. A call will also be dropped if the originating base
station detects a drop in received signal power due to multipath fading or shadowing, and initiates a
handoff as a result even though the mobile terminal might be nowhere near a cell boundary. The spectral
efficiency per unit area is increased by shrinking the size of a cell, since more users can be accommodated
in a given area. However, decreasing the cell size increases the rate at which handoffs occur, which
impacts higher level protocols. In general, if the rate of handoff increases the rate of call dropping
will also increase proportionally. Routing is also more difficult with small cells, since routes need to be
re-established whenever a handoff occurs.

While frequency reuse increases spectral efficiency, it also introduces co-channel interference, which
affects the achievable data rate and bit-error-probability of each user. The interference which results from
reusing frequencies is small if the users operating at the same frequency have enough distance between
them. However, spectral efficiency is maximized by packing the users as close together as possible. Thus,
the best cellular system design places users which share the same channel at a separation distance where
the co-channel interference is just below the maximum tolerable level for the required data rate and error
probability. Equivalently, good cellular system designs are interference-limited, such that the interference
power is much larger than the noise power, and thus noise is generally neglected in the study of these
systems.

Since co-channel interference is subject to shadowing and multipath fading, a static cellular system
design must assume worst-case propagation conditions in determining this separation distance. A better
design uses dynamic resource allocation in the cellular system, where power and bandwidth are allo-
cated based on propagation conditions, user demands, and system traffic. Dynamic resource allocation
can significantly increase both spectral and power efficiency, but the system complexity also increases
dramatically. We discuss dynamic resource allocation is more detail below.

15.2 Frequency Reuse in Cellular Systems

15.2.1 Frequency Reuse in Code-Division Systems

The channels for code-division are semi-orthogonal due to the spreading code properties: these codes
allow channel reuse in every cell, but also introduce interference from all users within the same cell
(intracell interference) as well as from users in other cells (intercell interference). To compensate for the
near-far problem of the intracell interferers, most code-division multiple access systems use power control.
Unfortunately, using power control to invert signal attenuation dramatically increases the interference
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from neighboring cells: since mobiles close to a cell boundary generally have weak received signal power,
power control boosts up the transmit power of these boundary mobiles, which increases their interference
to neighboring cells. Both intracell and intercell interference are attenuated by the processing gain of
the code [1]. Due to the large number of interferers, the performance analysis of a code-division cellular
system is fairly complex, and depends very heavily on the propagation model, cell size, mobility models,
and other system parameters [1].

15.2.2 Frequency Reuse in Time and Frequency Division Systems

The channels in frequency-division (FDMA) or time-division (TDMA) are orthogonal, so there is no
intracell interference in these systems. However, frequency reuse introduces intercell (co-channel) inter-
ference in all cells using the same channel. Thus, the received SNR for each user is determined by the
amount of interference at its receiver. If the system is not interference-limited then spectral efficiency
could be further increased by allowing more users onto the system or reusing the frequencies at smaller
distances.

Consider the cell diagram in Figure 15.2 below. Let R be the distance from the cell center to a
vertex. We denote the location of each cell by the pair (i, j) where, assuming cell A to be centered at the
origin (0, 0), the location relative to cell A is obtained by moving i cells along the u axis, then turning 60
degrees counterclockwise and moving j cells along the v axis. For example, cell G is located at (0, 1), cell
S is located at (1, 1), cell P is located at (−2, 2), and cell M is located at (−1,−1). It is straightforward
to show that the distance between cell centers of adjacent cells is

√
3R, and that the distance between

the cell center of a cell located at the point (i, j) and the cell center of cell A (located at (0, 0)) is given
by

D =
√

3R
√
i2 + j2 + ij. (15.1)

The formula (15.1) for D suggests a method for assigning frequency A to cells such that the cell
separation between cells operating at frequency A is D =

√
3R
√
i2 + j2 + ij. Starting at the origin cell

A, move i cells along any chain of hexagons, turn counterclockwise by 60 degress, move j cells along the
hexagon chain of this new heading, and assign frequency A to the jth cell. This process is shown in
Figure 15.3 below. To assign frequency A throughout the region, this process is repeated starting with
any of the new A cells as origin.

Using this process to assign all frequencies results in hexagonal cell clusters, which are repeated at
the distance D, as shown in Figure 15.4. Given that the area of a hexagonal cell is Acell = 3

√
3R2/2 and

the area of a hexagonal cluster is Acluster =
√

3D2/2, the number of cells per cluster is N = D2/(3R2) =
i2 + j2 + ij. N is also called the reuse factor, and a small value of N indicates efficient frequency reuse
(frequencies reused more often within a given area).

15.3 Dynamic Resource Allocation in Cellular Systems

Initial cellular systems were based on a fixed frequency reuse pattern designed for worst-case signal
propagation and interference assumptions. Any system using fixed frequency reuse and base station
assignment must be designed relative to worst-case interference assumptions. Dynamic resource allocation
is a more efficient strategy, where frequencies, base stations, data rates, and power levels are dynamically
assigned relative to to the current interference, propagation, and traffic conditions. Simple dynamic
channel allocation techniques have been shown to improve channel efficiency by a factor of two or more,
even for relatively simple algorithms [7]. However, this analysis was based on fairly simplistic system
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Figure 15.4: Cell Clusters.

assumptions. Performance improvement of dynamic resource allocation under realistic system conditions
remains an open and challenging research problem.

Most previous investigations on dynamic channel allocation were based on assumptions of fixed traffic
intensity, heterogeneous user demands, fixed reuse constraints, and static channels and users. Even under
these simplistic assumptions, optimizing channel allocation is highly complex. An excellent survey on
current research in dynamic resource allocation can be found in [7]

Reduced complexity has been obtained by applying neural networks and simulated annealing to the
problem; however, these approaches can suffer from lack of convergence, or yield suboptimal results.
Little work has been done on optimal or suboptimal resource allocation strategies which consider the
simultaneous stochastic variation in traffic, propagation, and user mobility. In addition, current allocation
procedures an not easily generalized to incorporate power control, traffic classes (e.g. multimedia), cell
handoff, or user priorities. The superior efficiency of dynamic resource allocation is most pronounced
under light loading conditions. As traffic becomes heavier, dynamic allocation strategies can suffer from
suboptimal allocations which are difficult to reallocate under heavy loading conditions. Thus, the optimal
dynamic resource allocation strategy is also dependent on traffic conditions, as was the optimal choice of
multiple or random access technique. Finally, the complexity of dynamic resource allocation, particularly
in systems with small cells and rapidly-changing propagation conditions and user demands, may be
impossible to overcome, at least for the next five to ten years.

15.4 Area Spectral Efficiency

The multiuser capacity results of Chapter 15 assume multiple users sharing the same frequency band
through either an orthogonal (FDMA/TDMA) or semi-orthogonal (CDMA) partition of the spectrum.
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The spectral efficiency over a large geographical area for any of these partition techniques can generally
be increased by reusing the same frequency, time slot, or code at spatially separated cells, where the
power falloff with distance reduces the effect of the intercell interference. The magnitude of the intercell
interference depends on both the distance between interfering cells, also called the reuse distance RD, as
well as the propagation laws governing the interferers’ transmissions and the power adaptation policy.
Ideally, we would like to optimize the reuse distance RD to maximize the multiuser capacity per unit
area of the cellular system. We would also like to optimize the power adaptation policy, but this is a very
difficult optimization problem, as we discuss below.

In the following sections, we first describe the interference model used for the capacity calculations.
We then define the multicell capacity and the area spectral efficiency, which are both functions of reuse
distance. We also give a qualitative discussion of the effects of power control on intracell and intercell
interference. We conclude by outlining some methods of interference mitigation. These methods include
antenna sectorization, voice activity monitoring, and interference cancellation. Since multicell systems
are interference limited, any technique to reduce interference will increase the system capacity.

15.5 Interference Model

Most cellular systems are interference limited, meaning that the receiver noise power is generally much
less than the interference power, and can hence be neglected. The interference distribution for multicell
systems is generally assumed to be Gaussian. This is a reasonable assumption for CDMA systems, where
there are many intracell and intercell interferers, so the Gaussian distribution follows from the law of large
numbers. With FDMA or TDMA, however, there is usually only a few dominant interferers from the first
tier of interfering cells. Thus, the Gaussian assumption is usually invalid. In particular, on the forward
link, one or two mobiles which are close to the cell boundaries will generally dominate the interference.
On the reverse link, there are at most six interfering base stations for hexagonal cells. However, for
capacity calculations, the capacity-achieving distribution for all users (i.e. signal and interference) is
Gaussian. Thus, modeling the interference as Gaussian noise in capacity calculations is justified for any
of the partitioning techniques we’ve discussed.

15.5.1 Reuse Distance, Multicell Capacity, and Area Efficiency

Define the reuse distance RD to be the minimum distance between any two base stations that use the
same code, frequency, or time slot. Since these resources are reused at the distance RD, the area covered
by each resource is roughly the area of a circle with radius .5RD: π(.5RD)2. The larger the reuse
distance, the less efficienctly the network resources are used. However, reducing RD increases the level
of interference between cells, thereby reducing the capacity region of each cell. The multicell capacity
characterizes this tradeoff between efficient resource use and the capacity region per cell.

Consider a cellular system with N users per cell, a reuse distance RD, and a total bandwidth
allocation B. The multicell system capacity is defined as the multiuser rate region per Hertz divided by
the coverage area reserved for the cell resources:

Cmulticell =
(R1, R2, . . . , RN )/B

π(.5RD)2
, (15.2)

where (R1, R2, . . . , RN ) is the set of maximum rates that can be maintained by all users in the cell
simultaneously. Clearly, this set of rates will monotonically decrease as the interference from other cells
increases. Typically, these interference levels are inversely proportional to RD. Since the denominator of
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(15.2) increases with RD, there should be an optimal reuse distance which maximizes (15.2). However,
deriving this optimal value for the entire rate region is quite complicated, and therefore we instead
consider optimizing the reuse distance for the area efficiency, which we now describe.

The area spectral efficiency of a cell is defined as the total bit rate/Hz/unit area that is supported
by a cell’s resources. Given the multicell system capacity described above, the area efficiency is just

Ae =
∑N
i=1Ri/B

π(.5RD)2
. (15.3)

The rate Ri is just the capacity of the ith user in the cell, which depends on γi = Si/Ii, the received
signal-to-interference power of that user, and Bi, the bandwidth allocated to that user. We could also
define Ri to be the maximum possible rate for the ith user under a given set of system parameters
(e.g. QPSK modulation with trellis coding, three branch diversity, and a required BER of 10−6. If γi is
constant, then Ri = Ci = Bi log(1 + Si/Ii). Typically, γi is not constant, since both the interference and
signal power of the ith user will vary with propagation conditions and mobile locations. When γi varies
with time, Ri equals the time-varying channel capacity of the ith user:

Ri = Bi

∫
log(1 + γi)p(γi)dγi. (15.4)

It can also be defined as the maximum possible rate for the ith user under the given system parameters
and time-varying channel conditions.

In general, it is extremely difficult to obtain the distribution p(γi) in a multicell system, since this
distribution depends on the power control policy and channel variations of both the signal and the inter-
ferers. The power control policy that maximizes a single user’s data rate will not always maximize the area
efficiency, since increasing the signal power of one user increases that user’s interference to everyone else.
Determining the power control policy that maximizes area efficiency is a complex optimization problem
which will depend on the spectrum partitioning technique, propagation characteristics, system layout,
and the number of users. This optimization is too complex for analysis if all the system characteristics
are taken into account. Thus, optimal power control for multicell systems remains an open problem.

If we fix the power control policy, and assume a particular set of system parameters, then the
distribution of γi can be determined either analytically or via simulation. The distribution of γi for
CDMA systems (i.e., with both intracell and intercell interference), assuming Gaussian interference and
the channel inversion power control policy, has been determined analytically in [1, 2, 3], and via simulation
in [4, 5]. The distribution of γi for CDMA under other power control policies, and for FDMA and TDMA
under any form of power control, has not yet been determined. With these distributions, a comprehensive
comparison of area efficiency under different power control policies and spectrum partitioning methods
could be done using the methods described above.

15.5.2 Efficiency Calculations

We now give some examples of the area efficiency calculation for the cell uplink with different power control
policies. In order to get analytical formulas for the efficiency, we must make very simple assumptions
about the system. In particular, we ignore the effects of noise, fading, and shadowing. We will also ignore
the effects of user mobility, and calculate the efficiency based on a fixed location for the mobile of interest
and the interferers.

Consider first frequency-division, where all users in the cell are assigned the same bandwidth Bi =
B/N and transmit power S. We assume the pessimistic model that all the users in the cell are located at
the cell boundary, and all the interferers are located at their cell boundaries closest to our cell of interest.
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Figure 15.5: Area Efficiency for Frequency Division (γ = 4)

We assume a propagation model of Kd−2 within a cell, and Kd−γ outside the cell, where 2 ≤ γ ≤ 4. With
no power control (constant transmit power), the received signal power of the ith user is then Si = SKR−2,
and the interference power is Ii = 6SK(RD −R)−γ . The capacity of the ith user in the cell is thus

Ci =
B

N
log

(
1 +

(RD −R)γ

6R2

)
, (15.5)

and the area efficiency is

Ae =
∑N
i=1Ci/B

π(.5RD)2
=

log
(
1 + (RD−R)γ

6R2

)
π(.5RD)2

. (15.6)

Plots of Ae versus RD for γ = 4 and γ = 2, are shown in figures 15.5 and 15.6 below. In this plot
and all subsequent plots, we normalize the cell radius to R = 1. Comparing these figures, we see that,
as expected, if the interference propagation loss falls off more slowly, the area efficiency is decreased.
However, it is somewhat surprising that the optimal reuse distance is also decreased.

Suppose now that the interferers are not on the cell boundaries. If all interferers are at a distance
RD −R/2 from their base stations, then the area efficiency becomes

Ae =
∑N
i=1Ci/B

π(.5RD)2
=

log
(
1 + (RD−R/2)γ

6(R)2

)
π(.5RD)2

. (15.7)

The area efficiency in this case is plotted in the figure below for γ = 4. As expected, the area efficiency
in this case is larger then in Figure 15.5 and the optimal reuse distance is smaller.

Returning to the pessimistic geometry of all users on the cell boundaries, suppose we now use the
power control policy which inverts the channel. The received signal power in this case is Si = Sρ, where
ρ is a normalizing constant that insures the transmit power satisfies the average power constraint1. The

1The transmit power of the mobile at distance D from its base is SρD2/K to compensate for the path loss KD−2. For
our static channel, with the mobile at distance D = R, ρ = KR−2 insures an average transmit power of S. In general, ρ will
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Figure 15.6: Area Efficiency for Frequency Division (γ = 2)
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interference power is Ii = 6Sρ[R2/K][K(RD−R)−γ ], where the first bracketed term is the power control
of the interferer, and the second bracketed term is the propagation loss of that interferer. The received
signal-to-interference power in this case is thus

Si
Ii

=
(RD −R)γ

6R2
, (15.8)

the same as in the case of no power control. So the area efficiency in this case is the same as that
shown in Figures 15.5 and 15.6. The reason that power control does not affect the efficiency in this case
is symmetry: because the mobile and interferers have the exact same propagation loss and interference
conditions, the mobiles and interferers apply the same power control to their transmit signals. Thus,
whatever the power control policy is, its effect will be cancelled out. However, when the interferers are
closer to their base stations, the symmetry no longer applies.

Assume now that we use channel inversion, and that the interferers are at a distance R/2 from their
base stations. The received signal power of the ith user is still Si = Sρ. The received interference power
is then

Ii = 6Sρ[(R/2)2/K][K(RD −R/2)−γ ], (15.9)

and the resulting area efficiency is

Ae =
log

(
1 + (RD−R/2)γ

6(R/2)2

)
π(.5RD)2

. (15.10)

This efficiency is plotted as a function of RD in the figure below for γ = 4. Comparing Figures 15.6
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Figure 15.8: Channel Inversion Power Control (γ = 4)

and 15.8 we see that for this system geometry, channel inversion has a higher efficiency than constant
transmit power.

depend on the distribution of the channel variation, e.g. if the received S/I = γ is Rayleigh distributed then ρ = E1/γ = 0.
Since both the mobiles and interferers typically have the same S/I distribution, we assume ρ is the same for both.
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Water-filling will give the same efficiency for all mobiles on the cell boundary as the other power
control policies. However, as the interferers move closer to their base stations, they will increase their
power. Thus, it is not clear what the worst-case interference scenario is for the water-filling power control.

The last example we consider is spread spectrum with channel inversion. Here, the received signal
power is Sρ. The interference power is the sum of in-cell and out-of-cell interference. We consider only
the first tier of interfering cells, and assume that those 6 cells contribute the same interference power.
Picking one of the interfering cells at random, the interference contribution from that cell is thus

Iinterfering-cell =
S

G

∑
i=1

N
(RD −Ri)−γ

R2
i

, (15.11)

where G is the spreading gain of the code (the cross-correlation inverse) and Ri is the distance of the ith
interferer from its base station. The total interference power is thus

Ii =
S(N − 1)

G
+

6S
G

∑
i=1

N
(RD −Ri)−γ

R2
i

. (15.12)

Computing this interference power is fairly complicated, unless we assume that all users in the cell
are located at the cell boundary, which is unlikely. However, we can lower bound the area efficiency by
considering only the in-cell interference. Since we are ignoring the out-of-cell interference, the optimal
reuse distance will be RD = 2R, i.e. codes are reused in every cell. Then for N large,

Si
Ii

=
N − 1
G

≈ N − 1
N

≈ 1, (15.13)

where we make the approximation that the spreading gain G is roughly equal to the number of codes N .
Plugging this in, we get an area efficiency of

Ae =
log(1 + 1)
π(.5(2))2]

=
1
π

= .318. (15.14)

Thus, if we completely ignore out-of-cell interference, we get roughly the same capacity as the worst-
case interference scenario of frequency-division without power control and interference power falloff with
distance of Kd−4 (Figure 15.5). If we use the empirical observation that the out-of-cell interference power
is roughly the same as the in-cell interference power, we get Ae = log 1.5π = .186.

15.6 Power Control Impact on Interference

CELL A CELL B

A1
A 2 1B 2B

Figure 15.9: Interference Effects.

In this section we describe the qualitative impact of the power control policies we discussed for
single-user systems on intracell and intercell interference. Consider first the case of intracell interference

387

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


on the forward link (mobile to base station), where two users A1 and A2 are transmitting to the same
base station, as shown in Figure 15.9. Recall that intracell interference only occurs in CDMA systems,
since with FDMA or TDMA only one user is assigned to each frequency or time slot in the cell. If both
A1 and A2 transmit at the same power level, then the signal received by the base station from A1 will
generally be stronger than the signal received by A2. Therefore, the interference caused by A1 to A2

will be strong even after despreading. This difference in received signal strength is called the near-far
effect. To compensate for this effect, power control which equalizes the receive power of all users within
a cell is used. With this type of power control, the received power of users A1 and A2 at the base station
is the same, regardless of their individual path losses, so the signal-to-interference power after receiver
processing equals the spreading gain. The “water-filling” power control policy, which increases power
when the channel is good, has the opposite effect: since A1 has a good signal path it will increase its
transmit power, while A2 has a bad signal path, so it will decrease its signal power. Moreover, this policy
has a recursive effect: A1 increasing its power causes A2 to have an even worse channel, so A2 will lower
its power. This decreases the interference to A1, so A1 increases its power further, and so on. Roughly
speaking, the constant water-filling tends to remove all users from the cell except the one with the most
favorable channel. Therefore, if we consider only intracell interference effects, the water-filling policy is
unacceptable when all the users within a cell require a guaranteed rate at all times. However, it may have
a higher throughput in a system where the users within a cell can tolerate long periods of no transmission
with an occasional burst of very high-rate data, as in packet radio systems. This assumes that all the
users within a cell will eventually have the best signal path to the base station.

The effect of these two power control policies on intercell interference is quite different. Again
referring to Figure 15.9, suppose we have intercell interferers B1 and B2 from cell B coupling into cell A.
Without power control, the interference power from B1 will be strong, since it is close to the boundary
of cell A, while the interference from B2 has much farther to travel to the base station of cell A, and
will therefore be weaker. With the constant power policy, B1 will transmit at a high power since it is
far from its base station, and this will cause a higher level of interference in cell A. Since B2 reduces
power with this policy, and it is far from cell A’s base station, the constant power policy has the effect of
magnifying the power of interferers near cell B’s boundary while reducing the power of interferers close
to cell B’s base station. Conversely, the water-filling power control will cause B1 to lower its power and
B2 to increase its power, so that the intercell interferers in cell B have approximately the same amount
of power coupling into cell A’s base station, regardless of their location in cell B. Since the dominant
intercell interferers are generally near the cell boundaries, water-filling will significantly reduce intercell
interference on the forward link.

For the reverse link, the intracell interference and signal are both transmitted from the base station,
so their path loss at any point within cell A is the same. Therefore, no power control is required to equalize
the received signal strength of the signal and interference (equivalently, the constant power policy for the
reverse link is achieved with no power control). Water-filling power control has the same recursive effect
as in the forward link: since A1 has a good path, the base station transmits to A1 at a high power, which
will cause interference to A2, so transmit power to A2 is reduced, and so on. Hence, the effect of these
two power controls policies on intracell interference is roughly the same for both the forward link and the
reverse link.

For intercell interferers, if the base station is sending to B1 and B2 at the same power level, then the
location of B1 and B2 will not affect the amount of power coupling in to cell A. With water-filling, the
base station will send at a higher power to B2 and a lower power to B1, but these interference signals
have the same path loss to the mobiles in cell A. Therefore, it is difficult to say which power control
policy will cause worse intercell interference on the reverse link.
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15.7 Interference Mitigation

The rate regions for any of the three spectrum-sharing techniques will be increased if interference can
be reduced while maintaining the same number of users per cell and the same reuse distance. Several
techniques have been proposed to accomplish this, including speech gating, sectorization of the base
station antennas, and interference cancellation. We now describe each of these techniques in somewhat
more detail.

Speech gating takes advantage of the fact that in duplex voice transmission, each speaker is only
active approximately 40% of the time [6]. If voice activity is monitored, and transmission suppressed
when no voice is present, then overall interference caused by the voice transmission is reduced. If we
denote the average percentage of time that voice is active by ρ, then through speech gating the average
power of both intracell and intercell interference is reduced by ρ. Antenna sectorization refers to the use of
directional transmit and receive antennas at the base station. For example, if the 360o omni base station
antenna is divided into three sectors to be covered by three directional antennas of 120o beamwidths, then
the interferers seen by each directional antenna is one third the number that would be seen by the omni.
If NS denotes the number of directional antennas used to cover the 360o beamwidth then, on average,
antenna sectorization reduces the total interference power by a factor of NS .

Another method of mitigating interference in CDMA systems is multiuser detection. The received
CDMA signal is a superposition of each user’s signal, where user i modulates its data sequence with
a unique spreading code. The multiuser detector for such a received signal jointly detects the data
sequences of all users: if the data sequences of the interference is known, then it can be subtracted out
from the desired signal, as in the superposition coding techniques described above. The optimal receiver
for CDMA joint detection was derived by Verdú in [8]; it uses a bank of matched filters and the Viterbi
algorithm to determine either the maximum-likelihood set of received signal sequences or the set of signal
sequences with minimum error probability. However, the complexity of this optimal receiver structure is
exponential in the number of interfering users, making the receiver impractical for systems with many
interferers. The detection algorithm also requires knowledge of the signal energies, which is not always
available.

Several suboptimal multidetection schemes which are more practical to implement have also been
developed. A multiuser decorrelator for joint detection which does not require knowledge of the user
energies and with complexity that is only linear in the number of users was proposed in [9] and [10] for
synchronous and asynchronous users, respectively. Multistage detectors [11, 12] decode the users’ signals
sequentially in decreasing order of their received power. Specifically, the highest-power signal is detected
using a conventional CDMA receiver (i.e., all interference signals are treated as noise). This signal is then
subtracted from the total received signal, and then the highest-power remaining signal is detected. This
successive interference cancellation is done until all signals have been estimated. The decision-feedback
detector, proposed in [13], uses both forward and feedback filters to remove multiuser interference. As with
decision-feedback equalization, this approach suffers from error propagation. The multistage detectors
generally yield better performance than the decorrelator and decision-feedback detectors at a cost of
increased complexity (although still linear in the number of users). These detectors were designed for
AWGN channels, while more recent studies have looked at multiuser detection in fading channels [14, 15].
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[9] R. Lupas and S. Verdú, “Linear multiuser detectors for synchronous code-division multiple-access
channels,” IEEE Trans. Inform. Theory, Vol. IT-35, No. 1, pp. 123–136, Jan. 1989.
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Chapter 16

Ad-Hoc Wireless Networks

An ad hoc wireless network is a collection of wireless mobile nodes that self-configure to form a net-
work without the aid of any established infrastructure, as shown in Figure 16.1. Without an inherent
infrastructure, the mobiles handle the necessary control and networking tasks by themselves, generally
through the use of distributed control algorithms. Multihop connections, whereby intermediate nodes
send the packets towards their final destination, are supported to allow for efficient wireless communica-
tion between parties that are relatively far apart. Ad hoc wireless networks are highly appealing for many
reasons. They can be rapidly deployed and reconfigured. They can be tailored to specific applications,
which fits with the Oxford English Dictionary’s definition of ad hoc:“For this purpose, to this end; for
the particular purpose in hand or in view.” They are also highly robust due to their distributed nature,
node redundancy, and the lack of single points-of-failure. These characteristics are especially important
for military applications, and much of the groundbreaking research in ad hoc wireless networking was
supported by the (Defense) Advanced Research Projects agency (DARPA) [1, 2, 3]. Despite much re-
search activity over the last several decades on wireless communications in general, and ad hoc wireless
networks in particular, there remain many significant technical challenges in the design of these networks.
In this chapter we describe the basic design principles of ad hoc networks and some of the remaining
technical challenges that are still unsolved.

The lack of infrastructure inherent to ad hoc wireless networks is best illustrated by contrast with
the most prevalent wireless networks today: cellular systems and wireless local area networks (WLANs).
As described in Chapter 15, cellular telephone networks divide the geographic area of interest into regions
called cells. A mobile terminal located in a given cell communicates directly with a base station located
at or near the center of each cell. Thus, there is no peer-to-peer communication between mobiles. All
communication is via the base station through single hop routing. The base stations and backbone
network perform all networking functions, including authentication, call routing, and handoff. Most
wireless LANs have a similar, centralized, single hop architecture: mobile nodes communicate directly
with a centralized access point that is connected to the backbone Internet, and the access point performs
all networking and control functions for the mobile nodes. In contrast, an ad hoc wireless network has
peer-to-peer communication, distributed networking and control functions among all nodes, and multihop
routing.

This discussion should not be taken to mean that ad hoc wireless networks are completely flat; i.e.,
cannot have any infrastructure or pre-established node hierarchy. Indeed, many ad hoc wireless networks
form a backbone infrastructure from a subset of nodes in the network to improve network reliability and
capacity [4]. Similarly, some nodes may be chosen to perform as base stations for neighboring nodes [5].
The distinguishing emphasis in the ad hoc approach lies in the design requirements. Ad hoc wireless
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Figure 16.1: Ad Hoc Network.

networks may exploit infrastructure to improve network performance. However, while the infrastructure
provides the side benefit of enhanced performance, it is not a fundamental design principle of the network.

Ad hoc networks are quite common in the wired world. Indeed, most LANs, metropolitan area
networks (MANs), and wide area networks (WANs), including the Internet, have an ad hoc structure.
However, the broadcast nature of the radio channel introduces characteristics in ad hoc wireless networks
that are not present in their wired counterparts. In particular, a radio channel allows a node to transmit
a signal directly to any other node. The link signal-to-interference-plus-noise power ratio (SINR) between
two communicating nodes will typically decrease as the distance between the nodes increases, and will
also depend on the signal propagation and interference environment. Moreover, this link SINR varies
randomly over time due to the mobility of the nodes which typically changes the transmission distance,
propagation environment, and interference characteristics. Link SINR determines the communication
performance of the link: the data rate and associated probability of packet error or bit error (bit- error-
rate or BER) that can be supported on the link. Links with very low SINRs are not typically used due
to their extremely poor performance, leading to partial connectivity among all nodes in the network, as
shown in Figure 16.1. However, link connectivity is not a binary decision, as nodes can back off on their
transmission rate or increase their transmit power as link SINR degrades and still maintain connectivity
[6, 7]. This is illustrated by the different line widths corresponding to different link qualities in Figure
1. Link connectivity also changes as nodes enter and leave the network, and this connectivity can be
controlled by adapting the transmit power of existing network nodes to the presence of a new node [8].
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The flexibility in link connectivity that results from varying link parameters such as power and data
rate has major implications for routing. Nodes can send packets directly to their final destination via single
hop routing as long as the link SINR is above some minimal threshold. However, single hop routing can
cause excessive interference to surrounding nodes. Routing over a single hop may also require a relatively
low rate or have a high probability of bit or packet error if the link SINR is low, thereby introducing
excessive delays. Alternatively packets can be forwarded from source to destination by intermediate nodes
at a link rate commensurate with the forwarding link SINR. Routing via forwarding by intermediate
nodes is called multihop routing. Several recent research results indicate that ideal multihop routing
significantly increases the capacity of ad hoc wireless networks [57, 34], but achieving these gains through
a decentralized routing strategy remains elusive. The channel and network dynamics of ad hoc wireless
systems coupled with multihop routing make it difficult to support multimedia requirements of high speed
and low delay. However, flexibility in the link, access, network and application protocols can be exploited
to compensate and even take advantage of these dynamics.

Energy constraints are not inherent to all ad hoc wireless networks. Devices in an ad hoc wireless
network may be stationary and attached to a large energy source. Mobile devices may be part of a
large vehicle, such as a car or tank, that can generate significant amounts of power over the long term.
However, many ad hoc wireless network nodes will be powered by batteries with a limited lifetime.
Some of the most exciting applications for ad hoc wireless networks follow this paradigm. Thus, it is
important to consider the impact of energy-constrained nodes in the design of ad-hoc wireless networks.
Devices with rechargeable batteries must conserve energy to maximize time between recharging. Of
particular interest are devices that cannot be recharged, i.e. sensors that are imbedded in walls or
dropped into a remote region. Energy constraints impact both the hardware operation and the signal
transmission associated with node operation. It is often assumed that the transmit power associated with
packet transmission dominates power consumption. However, signal processing associated with packet
transmission and reception, and even hardware operation in a standby mode, consume nonnegligible
power as well [9, 10, 11]. This entails interesting energy tradeoffs across protocol layers. At the link
layer many communications techniques that reduce transmit power require a significant amount of signal
processing. It is widely assumed that the energy required for this processing is small and continues to
decrease with ongoing improvements in hardware technology [10, 12]. However, the results in [9, 11]
suggest that these energy costs are still significant. This would indicate that energy-constrained systems
must develop energy-efficient processing techniques that minimize power requirements across all levels
of the protocol stack and also minimize message passing for network control, as these entail significant
transmitter and receiver energy costs. Sleep modes for nodes must be similarly optimized, since these
modes conserve standby energy but may entail energy costs at other protocol layers due to associated
complications in access and routing. The hardware and operating system design in the node can also be
optimized to conserve energy: techniques for this optimization are described in [11, 13].

Another important characteristic of ad hoc wireless networks is mobility in the network nodes.
Mobility impacts all layers of the network protocol stack. At the link layer it determines how fast the link
characteristics change and whether or not the link connectivity is stable over time. At the medium access
control layer it affects how long measurements regarding channel and interference conditions remain in
affect and how scheduling algorithms perform. At the network layer mobility has major implications for
the performance of different routing protocols. The impact of mobility on network performance ultimately
dictates which applications can be supported on a highly mobile network. The impact of mobility on ad
hoc wireless network design will be discussed in more detail throughout the paper.

The remainder of this chapter is organized as follows. We first discuss applications for ad hoc wireless
networks, including data networks, home networks, device networks, sensor networks, and distributed
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control. Next we consider cross layer design in ad hoc wireless networks: what it is, why it is needed,
and how it can be done. Link layer design issues are discussed next, followed by consideration of the
medium access control (MAC) layer design issues, including the tradeoffs inherent to frequency/time/code
channelization and the assignment of users to these channels via random access or scheduling. This
section also describes the role power control can play in multiple access. Networking issues such as
neighbor discovery, network connectivity, scalability, routing, and network capacity are outlined next.
Last we describe techniques for the network to adapt to the application requirements and the application
to adapt to network capabilities.

16.0.1 Applications

Since the ad hoc wireless network paradigm tailors the network design to the intended application, it will
be useful to consider potential applications in some detail. In what follows we will consider both military
and commercial applications. We will see that several design requirements are common to both types of
systems, especially the need for energy efficiency. Military applications often require the self-configuring
nature and lack of infrastructure inherent to ad hoc wireless networks, even if it results in a significant
cost or performance penalty. The lack of infrastructure is also highly appealing for commercial systems,
since it precludes a large investment to get the network up and running, and deployment costs may
then scale with network success. Other commercial advantages include ease of network reconfiguration
and reduced maintenance costs. However, these advantages must be balanced against any performance
penalty resulting from the need for distributed network control.

In this section we consider the following applications: data networks, home networks, device networks,
sensor networks, and distributed control systems. Note that this list is by no means comprehensive, and
in fact the success of ad hoc wireless networks hinges on making them sufficiently flexible so that there
can be accidental successes. Therein lies the design dilemma for ad hoc wireless networks. If the network
is designed for maximum flexibility to support many applications (a one-size-fits-all network) then it
will be difficult to tailor the network to different application requirements. This will likely result in
poor performance for some applications, especially those with high rate requirements or stringent delay
constraints. On the other hand, if the network is tailored to a few specific applications then designers
must predict in advance what these “killer applications” will be - a risky proposition. Ideally an ad
hoc wireless network must be sufficiently flexible to support many different applications while adapting
its performance to the given set of applications in operation at any given time. The cross layer design
discussed in below provides this flexibility along with the ability to tailor protocol design to the energy
constraints in the nodes.

Data Networks

Ad hoc wireless networks can support data exchange between laptops, palmtops, personal digital assis-
tants (PDAs), and other information devices. We focus on two types of wireless data networks: LANs
with coverage over a relatively small area (a room, floor, or building) and MANs with coverage over
several square miles (a metropolitan area or battlefield). The goal of wireless LANs is to provide peak
data rates on the order of 10-100 Mbps, similar to what is available on a wired LAN, for low- mobility
and stationary users. Commercial wireless LAN standards such as 802.11a and 802.11b provide data
rates on this order, however the individual user rates are much less if there are many users accessing
the system. Moreover, these commercial LANs are not really based on an ad hoc structure. The normal
802.11 network configuration is a star topology with one wireless access point and single hop routing from
the mobile units to the access point. While the 802.11 standard does support a peer-to-peer architecture
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in the form of the Independent Base Service Set (IBSS) configuration option, it is not widely used and
its performance is somewhat poor [Saadawi01].

Wireless MANs typically require multihop routing since they cover a large area. The challenge in
these networks is to support high data rates, in a cost-effective manner, over multiple hops, where the
link quality of each hop is different and changes with time. The lack of centralized network control and
potential for high-mobility users further complicates this objective. Military programs such as DARPA’s
GLOMO (Global mobile information systems) have invested much time and money in building high-
speed wireless MANs that support multimedia, with limited success [14, 15]. Wireless MANs have also
permeated the commercial sector, with Metricom the best example [16]. While Metricom did deliver
fairly high data rates throughout several major metropolitan areas, the deployment cost was quite large
and significant demand never materialized. Metricom filed for protection under Chapter XI of the Federal
Bankruptcy Code in the fall of 2000.

Note that energy efficiency is a major issue in the design of wireless data networks. The canonical
example of an ad hoc wireless data network is a distributed collection of laptop computers. Laptops are
highly limited in battery power, so power must be conserved as much as possible. In addition, a laptop
acting as a router for other laptops could drain its battery forwarding packets for other users. This
would leave no power for the laptop user and would initiate a change in network topology. Thus, these
networks must conserve battery power in all communication functions, and devise routing strategies that
use residual power at each node of the network in a fair and efficient manner.

Home Networks

Home networks are envisioned to support communication between PCs, laptops, PDAs, cordless phones,
smart appliances, security and monitoring systems, consumer electronics, and entertainment systems
anywhere in and around the home. The applications for such networks are limited only by the imagination.
For example, using a PDA in the bedroom one could scan stored music titles on a PC and direct the
bedroom stereo to play a favorite piece, check the temperature in the living room and increase it by a few
degrees, check the daily TV programming from the Internet and direct the VCR to record a show that
night, access voice messages and display them using a voice-to-text conversion software, check stocks on
the Internet and send selling instructions to a broker, and start the coffee maker and toaster, all without
getting up from the bed. Other applications include smart rooms that sense people and movement and
adjust light and heating accordingly, “aware homes” that network sensors and computers for assisted
living of seniors and those with disabilities, video or sensor monitoring systems with the intelligence to
coordinate and interpret data and alert the home owner and the appropriate police or fire department of
unusual patterns, intelligent appliances that coordinate with each other and with the Internet for remote
control, software upgrades, and to schedule maintenance, and entertainment systems that allow access to
a VCR, Tivo box, or PC from any television or stereo system in the home [17, 18, 19, 20].

There are several design challenges for such networks. One of the biggest is the need to support
the varied quality-of-service (QoS) requirements for different home networking applications. QoS in this
context refers to the requirements of a particular application, typically data rates and delay constraints,
which can be quite stringent for home entertainment systems. Other big challenges include cost and the
need for standardization, since all of the devices being supported on this type of home network must
follow the same networking standard. Note that the different devices accessing a home network have
very different power constraints: some will have a fixed power source and be effectively unconstrained,
while others will have very limited battery power and may not be rechargeable. Thus, one of the biggest
challenges in home network design is to leverage power in unconstrained devices to take on the heavi-
est communication and networking burden, such that the networking requirements for all nodes in the
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network, regardless of their power constraints, can be met.
One approach for home networking is to use an existing wireless LAN standard such as 802.11 [21].

But 802.11 has several limitations for this type of application. First, it most commonly supports a star
architecture with a single access point and all devices talking directly to this access node. This star
architecture eliminates the benefits of multihop routing, and while multihop routing is possible in 802.11,
as noted above, its performance is poor. In addition, 802.11 uses a statistical multiple access protocol,
which makes it difficult to support the quality required in home entertainment systems. 802.11b is also
somewhat limited in data rate (1-10Mbps), and while the 802.11a standard supports much higher rates
(10-70 Mbps), it is mainly designed for packet data applications and not media streaming. While protocols
to support media streaming on top of 802.11a are being developed (802.11e), this type of overlay will
likely be insufficient to provide high- quality wireless home entertainment.

A natural choice for home networking is a peer-to-peer ad hoc wireless network. Much of the
communication in home networks will take place between peer devices, so peer-to-peer communication
eliminates the overhead of going through a centralized node. In addition, many of the devices in a home
network will be low power or battery-limited. In an ad hoc wireless network these devices need only
communicate with their nearest neighbors (typically a short distance away) to maintain connectivity
with (all) other devices in the home. Thus, multihop routing will be very beneficial to such devices in
terms of energy savings. Most home networking applications involve stationary or low-mobility nodes,
so the protocols need not support high mobility. Ad hoc wireless networks will be challenged to provide
high-quality media streaming for home entertainment, and this is an open area of active research.

Home networking is being pushed strongly by the HomeRF working group, which has developed an
open industry standard for such networks that combines a centralized and peer-to-peer structure [19].
The working group for HomeRF was initiated by Intel, HP, Microsoft, Compaq, and IBM. The main
component of the HomeRF protocol is its Shared Wireless Access Protocol (SWAP). The SWAP protocol
is designed to carry both voice and data traffic and to interoperate with the PSTN and the Internet.
SWAP is a combination of a managed network that provides isochronous services (such as real-time voice
and video) via a centralized network controller (the main home PC) along with an ad hoc peer-to-peer
network for data devices. The centralized network controller is not required but it greatly facilitates
providing dedicated bandwidth to isochronous applications. Bandwidth sharing is enabled by frequency
hopped spread spectrum at 50 hops/sec. HomeRF also supports a time division service for delivery of
interactive voice and other time- critical services, and a random access protocol for high speed packet
data. The transmit power for HomeRF is specified at 100 mW which provides a data rate of 1-2 Mbps.
However, in August 2000 the FCC authorized a five-fold increase in the HomeRF bandwidth, effectively
increasing data rates to 10 Mbps. The range of HomeRF covers a typical home and backyard. HomeRF
products operating in the 2.4 GHz band are currently on the market in the 100−200 price range. Details
on these products can be found at http://www.homerf.org.

Device Networks

Device networks support short-range wireless connections between devices. Such networks are primarily
intended to replace inconvenient cabled connections with wireless connections. Thus, the need for cables
and the corresponding connectors between cell phones, modems, headsets, PDAs, computers, printers,
projectors, network access points, and other such devices is eliminated. Clearly many of these devices
have limited battery life, but are generally rechargeable. Thus, device networks require energy efficiency.

The main technology driver for such networks is Bluetooth [5, 22]. The Bluetooth standard is based
on a tiny microchip incorporating a radio transceiver that is built into digital devices. The transceiver
takes the place of a connecting cable for electronic devices. Up to eight Bluetooth devices can form
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a star-topology network (a piconet) with one node acting as a master and the other nodes acting as
slaves. The master node is responsible for synchronization and scheduling transmissions of the slave
nodes. Piconets can also be interconnected, leading to a multihop topology. Bluetooth is mainly for
short-range communications, e.g. from a laptop to a nearby printer or from a cell phone to a wireless
headset. Its normal range of operation is 10 m (at 1 mW transmit power), and this range can be increased
to 100 m by increasing the transmit power to 100 mW. The system operates in the unregulated 2.4 GHz
frequency band, hence it can be used worldwide without any licensing issues. The Bluetooth standard
provides 1 data channel at 721 Kbps and up to three voice channels at 56 Kbps for an aggregate bit
rate on the order of 1 Mbps. Networking is done via a packet switching protocol based on frequency
hopping at 1600 hops per second. Energy constraints played a large role in the design of Bluetooth, with
a goal of using as little energy from the host device as possible. Bluetooth uses a range of techniques
in its hardware, communication, and networking protocols to preserve energy, including power-efficient
modulation, a limited transmission range, smart packet detection, and intelligent sleep scheduling [22].

The Bluetooth standard was developed jointly by 3Com, Ericsson, Intel, IBM, Lucent, Microsoft,
Motorola, Nokia, and Toshiba. Over 1300 manufacturers have now adopted the standard, and products
compatible with Bluetooth are starting to appear on the market now. Some of the products currently
available include a wireless headset for cell phones (Ericsson), a wireless USB or RS232 connector (RTX
Telecom, Adayma), wireless PCMCIA cards (IBM), and wireless settop boxes (Eagle Wireless). The
prognosis for Bluetooth has been varied, progressing from the early euphoria of the late1990s to pessimism
and claims of premature death in the year 2000 to the current outlook of guarded optimism.

Sensor Networks

Sensor networks have enormous potential for both consumer and military applications. For the military,
it is now painfully clear that the wars of the 21st century will differ significantly from those of the
20th. Enemy targets will be small, mobile, and generally found in extremely hostile terrain. If the
war in Afghanistan is any indication, the targets in future combats will be small and difficult to detect
from great distances. Future military missions will therefore require that sensors and other intelligence
gathering mechanisms be placed close to their intended targets. The potential threat to these mechanisms
is therefore quite high, so it follows that the technology used must be highly redundant and require as
little support as possible from friendly forces. An apparent solution to these constraints lies in large arrays
of passive electromagnetic, optical, chemical, and biological sensors. These can be used to identify and
track targets, and can also serve as a first line of detection for various types of attacks. A third function
lies in the support of the movement of unmanned, robotic vehicles. For example, optical sensor networks
can provide networked navigation, routing vehicles around obstacles while guiding them into position for
defense or attack. The design considerations for some industrial applications are quite similar to those
for military applications. In particular, sensor arrays can be deployed and used for remote sensing in
nuclear power plants, mines, and other industrial venues.

Examples of sensor networks for the home environment include electricity, gas, and water meters that
can be read remotely through wireless connections. The broad use of simple metering devices within the
home can help consumers identify and regulate devices like air conditioners and hot water heaters that
are significant consumers of power and gas. Simple attachments to power plugs can serve as the metering
and communication devices for individual appliances. One can imagine a user tracking various types of
information on home energy consumption from a single terminal the home computer. Remote control of
television usage and content could be monitored in similar ways. Another important home application is
smoke detectors that could not only monitor different parts of the house but also communicate to track
the spread of the fire. Such information could be conveyed to local firefighters before they arrived on
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the scene along with house blueprints. A similar type of array could be used to detect the presence and
spread of gas leaks or other toxic fumes.

Sensor arrays also have great potential for use at the sites of large accidents. One may wish to
consider, for example, the use of remote sensing in the rescue operations following the collapse of a
building. Sensor arrays could be rapidly deployed at the site of an accident and used to track heat,
natural gas, and toxic substances. Acoustic sensors and triangulation techniques could be used to detect
and locate trapped survivors. It may even be possible to avert such tragedies altogether through the
use of sensor arrays. The collapse of walkways and balconies, for example, can be predicted and tragedy
averted by building stress and motion sensors into the structures from the outset. One can imagine
large numbers of low-cost low-power sensors being directly inserted into the concrete before it is poured.
Material fatigue can be detected and tracked over time throughout the structure. Such sensors must be
robust and self-configuring, and would require a very long lifetime, commensurate with the lifetime of
the structure.

Most sensors will be deployed with non-rechargeable batteries. The problem of battery lifetime
in such sensors may be averted through the use of ultra-small energy-harvesting radios. Research on
such radios, coined the PicoRadio, promise radios smaller than one cubic centimeter, weighing less than
100 grams, with a power dissipation level below 100 microwatts [23]. This low level of power dissipation
enables nodes to extract sufficient power from the environment - energy harvesting - to maintain operation
indefinitely. Such picoradios open up new applications for sensor deployment in buildings, homes, and
even the human body.

In short, important applications of the future are enabled by large numbers of very small, lightweight,
battery-powered sensors. These sensors must be easily and rapidly deployed in large numbers and, once
deployed, they must form a suitable network with a minimum of human intervention. All of these
requirements must be met with a minimum of power consumption due to battery limitations and, for
many applications, the inability to recharge these batteries

Distributed Control Systems

Ad hoc wireless networks enable distributed control, with remote plants, sensors and actuators linked
together via wireless communication channels. Such networks are imperative for coordinating unmanned
mobile units, and greatly reduce maintenance and reconfiguration costs over distributed control systems
with wired communication links. Ad hoc wireless networks are currently under investigation for support-
ing coordinated control of multiple vehicles in an automated highway system (AHS), remote control of
manufacturing and other industrial processes, and coordination of unmanned airborne vehicles (UAVs)
for military applications.

Current distributed control designs provide excellent performance as well as robustness to uncertainty
in model parameters. However, these designs are based on closed-loop performance that assumes a
centralized architecture, synchronous clocked systems, and fixed topology. Consequently, these systems
require that the sensor and actuator signals be delivered to the controller with a small, fixed delay. Ad
hoc wireless networks cannot provide any performance guarantee in terms of data rate, delay or loss
characteristics: delays are typically random and packets may be lost. Unfortunately, most distributed
controllers are not robust to these types of communication errors, and effects of small random delays can
be catastrophic [24, 25]. Thus, distributed controllers must be redesigned for robustness to the random
delays and packet losses inherent to wireless networks. Ideally, the ad hoc wireless network can also be
tailored to the requirements of the controller. This is a relatively new area of research: recent results
in this area can be found in [25] and the references therein. Energy constraints in distributed control
systems will be highly application-dependent: cars in an automated highway will have a large renewable
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energy source, whereas sensors in most manufacturing applications will have nonrechargeable batteries.

16.0.2 Cross Layer Design

The different applications for ad-hoc networks have a wide range of network requirements as well as
different energy constraints for different network nodes. The network requirements must be met despite
variations in the link characteristics on each hop, the network topology, and the node traffic. It is
very difficult to ensure performance of the network or the support of real-time or mission critical data
in the face of these random variations. There has been significant research directed toward energy
constraints, application requirements, and network variability at different levels of the network protocol
stack. Examples include diversity, coding, power control, and adaptive techniques at the link layer, power
control and scheduling at the MAC layer, energy-constrained and delay-constrained routing at the network
layer, and application adaptation at the application layer. However, this work has mainly targeted isolated
components of the overall network design, thereby ignoring important interdependencies. Specifically,
current ad hoc wireless network protocol design is largely based on a layered approach, as shown in
Figure 16.2. In this model each layer in the protocol stack is designed and operated independently,
with interfaces between layers that are static and independent of the individual network constraints and
applications. This paradigm has greatly simplified network design and led to the robust, scalable protocols
in the Internet. However, the inflexibility and suboptimality of this paradigm results in poor performance
for ad hoc wireless networks in general, especially when energy is a constraint or the application has high
bandwidth needs and/or stringent delay constraints. To meet these requirements a cross layer protocol
design that supports adaptivity and optimization across multiple layers of the protocol stack is needed.

In an adaptive cross layer protocol stack, the link layer can adapt rate, power, and coding to meet
the requirements of the application given current channel and network conditions. The MAC layer can
adapt based on underlying link and interference conditions as well as delay constraints and bit priorities.
Adaptive routing protocols can be developed based on current link, network, and traffic conditions.
Finally, the application layer can utilize a notion of soft quality-of-service (QoS) that adapts to the
underlying network conditions to deliver the highest possible application quality. It is important that the
protocols at each layer not be developed in isolation, but rather within an integrated and hierarchical
framework to take advantage of the interdependencies between them. These interdependencies revolve
around adaptivity at each layer of the protocol stack, general system constraints, such as energy and
mobility, and the application(s) the network is supporting.

Adaptivity at each layer of the protocol stack should compensate for variations at that layer based
on the time scale of these variations. Specifically, variations in link SINR are very fast, on the order of
microseconds for vehicle-based users. Network topology changes more slowly, on the order of seconds,
while variations of user traffic may change over tens to hundreds of seconds. The different time scales
of the network variations suggest that each layer should attempt to compensate for variation at that
layer first. If adapting locally is unsuccessful then information should be exchanged with other layers
for a more general response. For example, suppose the link connectivity (link SINR) in the wireless
link of an end-to-end network connection is weak. By the time this connectivity information is relayed
to a higher level of the protocol stack (i.e. the network layer for rerouting or the application layer for
reduced-rate compression), the link SINR will most likely have changed. Therefore, it makes sense for
each protocol layer to adapt to variations that are local to that layer. If this local adaptation is insufficient
to compensate for the local performance degradation then the performance metrics at the next layer of
the protocol stack will degrade as a result. Adaptation at this next layer may then correct or at least
mitigate the problem that could not be fixed through local adaptation. For example, consider again the
weak link scenario. Link connectivity can be measured quite accurately and quickly at the link level.

401

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


Application Layer

Network Layer

MAC Layer

Link Layer

Adaptivity

Figure 16.2: The OSI Layered Model for Protocol Design and Operation.

The link protocol can therefore respond to weak connectivity by increasing its transmit power or its error
correction coding. This will correct for variations in connectivity due to, for example, multipath flat-
fading. However, if the weak link is caused by something difficult to correct for at the link layer, e.g. the
mobile unit is inside a tunnel, then it is better for a higher layer of the network protocol stack to respond
by, for example, delaying packet transmissions until the mobile leaves the tunnel. Similarly, if nodes in the
network are highly mobile then link characteristics and network topology will change rapidly. Informing
the network layer of highly-mobile nodes might change the routing strategy from unicast to broadcast in
the general direction of the intended user. It is this integrated approach to adaptive networking - how
each layer of the protocol stack should respond to local variations given adaptation at higher layers - that
forms the biggest challenge in adaptive protocol design.

Energy conservation also requires a cross layer design. For example, Shannon theory indicates that
the energy required to communicate one bit of information decreases as the bit time increases [26].
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Thus, energy can be conserved by transmitting a bit over a longer period of time. However, this will
clearly impact the MAC protocol and also the application. Routing is also an interesting example. The
most energy efficient routing protocol in a sensor network may use a centrally-located sensor to forward
packets from other sensors. However, the battery of this sensor will be quickly exhausted, which might
be undesirable from an application standpoint. Thus, the need for energy efficiency must be balanced
against the lifetime of each individual node and the overall life of the network.

The above discussion indicates that in order to support an adaptive cross layer design, the design
and operation of the protocol stack must evolve to that shown in Figure 16.3. This figure indicates
that information must be exchanged across all layers in the protocol stack. This information exchange
allows the protocols to adapt in a global manner to the application requirements and underlying network
conditions. In addition, all protocol layers must be jointly optimized with respect to global system
constraints and characteristics such as energy and high-mobility nodes. In order to design a protocol
stack based on Figure 16.3, two fundamental questions must be answered:

1. What information should be exchanged across protocol layers and how should that information be
adapted to?

2. How should global system constraints and characteristics be factored into the protocol designs at
each layer.

Application Layer

Network Layer

MAC Layer

Link Layer

Cross−Layer
  Adaptivity

Operation

   System
Constraints

Design

Figure 16.3: Adaptive Cross Layer Design and Application.

In the next several sections we will discuss the design of the different layers in the protocol stack, and
then revisit cross layer design relative to these two questions. Cross layer design is an active theme in ad
hoc wireless network design today. However, there remains many open questions in the understanding
and implementation of this design philosophy.
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16.1 Link Design Issues

Many of the design issues for link layer design were covered in previous chapters. We will now briefly
review these ideas, and also discuss some new design issues that arise due to energy constraints.

16.1.1 Fundamental Capacity Limits

The fundamental capacity of wireless channels was discussed in Chapter 4. This capacity dictates the
maximum data rate that can be transmitted over the channel with arbitrarily small probability of error.
In Chapter 4 we analyzed the capacity of AWGN channels and fading channels, and the capacity of
multiple antenna channels was given in Chapter 10.1.4. Capacity results for fading channels with perfect
transmitter and receiver knowledge indicate that the transmitter should increase power and rate in
good channel conditions and decrease them in poor channel conditions. The multiple antenna results
indicate that the capacity of wireless channels increases linearly with the number of antennas at the
transmitter/receiver, however this requires perfect channel estimates. Degradation in these estimates
can significantly degrade the capacity gains resulting from multiple antennas. In general the capacity-
achieving codes for wireless channels have asymptotically large block lengths. The long codes and complex
decoding in this optimal scheme drive the probability of error to zero for any data rate below capacity,
but the complexity of these schemes makes them hard to approximate with practical implementations.

Channel capacity under a hard transmit energy constraint, as opposed to a peak or average power
constraint, is a relatively new design problem. With finite energy it is not possible to transmit any number
of bits with asymptotically small error probability. This is easy to see intuitively by considering the
transmission of a single bit. The only way to ensure that two different values in signal space, representing
the two possible bit values, can be decoded with arbitrarily small error is to make their separation
arbitrarily large, which requires arbitrarily large energy. Since arbitrarily small error probability is not
possible under a hard energy constraint, a different notion of reliable communication is needed. Pioneering
work by Gallager in this area defines reliable communication under a finite energy constraint in terms
of the capacity per unit energy. This capacity per unit energy is defined as the maximum number of
bits per unit energy that can be transmitted such that the maximum likelihood random coding error
exponent is positive. This definition ensures that for all rates below the capacity per unit energy error
probability decreases exponentially with the total energy, although it will not be asymptotically small
for finite-energy channels. Gallager also shows that the capacity per unit energy is achieved using an
unlimited number of degrees of freedom per transmitted bit. This translates to either very wideband
communication or using many symbols per bit, the opposite of high-rate transmission schemes under a
power constraint (e.g. MQAM, with M bits/symbol for M large).

Capacity per unit energy is also explored in [26], and these results can be used to obtain the capacity
of finite-energy channels in terms of bits [27]. Capacity in bits dictates the maximum number of bits that
can be transmitted over a channel using finite energy given some nonzero probability of bit error (recall
that this error probability cannot be driven to zero with finite energy). The capacity of a finite-energy
channel in bits is an important concept, since it indicates that ad hoc wireless networks with finite energy
nodes only have a finite number of bits that a given node can transmit before exhausting its energy.
Allocating those bits to the different requirements of the network: information transmission, exchange
of routing information, forwarding bits for other nodes, channel estimation, etc., becomes an interesting
and challenging optimization problem that clearly requires cross layer design.
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16.1.2 Coding

Channel coding can significantly reduce the power required to achieve a given BER and is therefore a
common feature in link layer design. Code designs for both AWGN and fading channels were discussed
in Chapter 8. Most wireless systems use some form of error control coding to reduce power consumption.
Conventional error control codes use block or convolutional code designs: the error correction capability
of these codes is obtained at the expense of an increased signal bandwidth or a lower data rate. Trellis
codes use a joint design of the channel code and modulation to provide good error correction without
any bandwidth or rate penalty. Turbo codes and the more general family of codes on graphs minimize
transmit power required for AWGN channels, but the associated processing complexity may compromise
these power gains. All of these codes can also be designed for fading channels to limit required energy.

16.1.3 Multiple Antennas

Multiple antennas at the transmitter and/or receiver play a powerful role in improving the performance
and reducing the required transmit power for wireless link layer designs, as described in more detail
in Chapter 7. Multiple antenna systems typically use either diversity, beamsteering, or multiple input
multiple output (MIMO) techniques. Diversity combining is a common technique to mitigate flat fading
by coherently combining multiple independently fading copies of the signal. By significantly reducing the
impact of flat- fading, diversity combining can lead to significant power savings.

Beamsteering creates an effective antenna pattern at the receiver with high gain in the direction
of the desired signal and low gain in all other directions. Beamsteering is accomplished by combining
arrays of antennas with signal processing in both space and time. The signal processing typically adjusts
the phase shifts at each antenna to “steer” the beam in the desired direction. A simpler technique
uses sectorized antennas with switching between the sectors. Beamsteering significantly improves energy
efficiency since transmitter power is focused in the direction of its intended receiver. Beamsteering also
reduces interference power along with fading and intersymbol interference due to multipath, since the
interference and multipath signals are highly attenuated when they arrive from directions other than that
of the line-of-sight (or dominant) signal. Results indicate that beamsteering can significantly improve
the transmission range, data rates, and BER of wireless links. Highly mobile nodes can diminish these
gains, as the beamsteering direction will be shifting and difficult to determine accurately.

Multiple input multiple output (MIMO) systems, where both transmitter and receiver use multiple
antennas, can significantly increase the data rates possible on a given channel. As we saw in Chapter 7,
in MIMO systems, if both the transmitter and the receiver have channel estimates, then with N antennas
at the transmitter and receiver the MIMO system can be transformed into N separate channels that do
not interference with each other, providing a roughly N-fold capacity increase over a system with a single
antenna at both the transmitter and receiver. When the transmitter does not know the channel then the
optimal transmission strategy is a space-time code, where bits are encoded over both space and time.
These codes are highly complex, so in practice suboptimal schemes like layered space-time codes are used
and tend to perform very well.

While multiple antenna techniques save transmission power, they are often highly complex and
therefore require significant power for signal processing. Given a total energy constraint this tradeoff
must be examined relative to each system to determine if multiple antenna techniques result in a net
savings in energy.
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16.1.4 Power control

Power control is a potent mechanism for improving wireless ad-hoc network performance. At the link layer
power control can be used to compensate for random channel variations due to multipath fading, reduce
the transmit power required to obtain a given data rate and error probability, minimize the probability
of link outage, and reduce interference to neighboring nodes. It can also be used to meet hard delay
constraints and prevent buffer overflow.

Power control strategies at the link layer typically either maintain SINR on the link above a required
threshold by increasing power relative to fading and interference or use a ”water-filling” approach where
power and rate are increased for good channel conditions, decreased for poor channel conditions, and set
to zero when the channel quality falls below a given cutoff threshold, as described in Chapter 9. The
constant SINR strategy works well for continuous stream traffic with a delay constraint, where data is
typically sent at a fixed rate regardless of channel conditions. However, this power control strategy is not
power efficient, since much power must be used to maintain the constant SINR in deep fading conditions.
Optimal variation of transmission rate and power maximizes average throughput and channel capacity,
but the associated variable-rate transmission and channel-dependent delay may not be acceptable for
some applications. Power control has also been used to meet delay constraints for wireless data links. In
this approach power for transmission of a packet increases as the packet approaches its delay constraint,
thereby increasing the probability of successful transmission [28]. A more complex approach uses dynamic
programming to minimize the transmit power required to meet a hard delay constraint [29], and the
resulting power consumption is much improved over power control that maintains a constant SINR.

Before closing this section, we want to emphasize that power control has a significant impact on
protocols above the link layer. The level of transmitter power defines the “local neighborhood” - the
collection of nodes that can be reached in a single hop - and thus in turn defines the context in which
access, routing, and other higher layer protocols operate. Power control will therefore play a key role in
the development of efficient cross layer networking protocols. We will discuss integration of power control
with multiple access and routing protocols in later sections.

16.1.5 Adaptive Resource Allocation

Adaptive resource allocation in link layer design provides robust link performance with high throughput
while meeting application-specific constraints. The basic premise is to adapt the link transmission scheme
to the underlying channel, interference, and data characteristics through variation of the transmitted
power level, symbol transmission rate, constellation size, coding rate/scheme, or any combination of these
parameters. Moreover, adaptive modulation can compensate for SINR variations due to interference as
well as multipath fading and can be used to meet different QOS requirements of multimedia [30] by
prioritizing delay-constrained bits and adjusting transmit power to meet BER requirements.

Recent work in adaptive resource allocation has investigated combinations of power, rate, code, and
BER adaptation ([31] and the references therein). These schemes typically assume some finite number
of power levels, modulation schemes, and codes, and the optimal combination is chosen based on system
conditions and constraints. Only a small number of power levels, rates, and/or codes are needed to
achieve near-optimal performance, since there is a critical number of degrees of freedom needed for
good performance of adaptive resource allocation, and beyond this critical number additional degrees of
freedom provide minimal performance gain [31]. In particular, power control in addition to variable-rate
transmission provides negligible capacity increase in fading channels [32], cellular systems [33, 40], and ad
hoc wireless networks [34]. CDMA systems, in addition to varying power, data rate, and channel coding,
can also adjust their spreading gain or the number of spreading codes assigned to a given user [35, 36].

406

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


The benefits of assigning multiple spreading codes per user are greatest when some form of multiuser
detection is used, since otherwise self-interference is introduced [37]. Note also that in adaptive CDMA
systems all transmitters sending to a given receiver must coordinate since they interfere with each other.

Other adaptive techniques include variation of the link layer retransmission strategy as well as its
frame size. The frame is the basic information block transmitted over the link and includes overhead in
the form of header and error control bits. Shorter frames entail a higher overhead, but are less likely to
be corrupted by sporadic interference and require less time for retransmission. Recent results have shown
that optimizing frame length can significantly improve throughput as well as energy efficiency [38].

Data communications require corrupted packets to be retransmitted so that all bits are correctly
received. Current protocols typically discard the corrupted packet and start over again on the retrans-
mission. However, recent work has shown that diversity combining of retransmitted packets or retrans-
mitting additional redundant code bits instead of the entire packet can substantially increase throughput
([39] and the references therein). A performance comparison of incremental redundancy against that of
adaptive modulation is given in [40].

16.2 Medium Access Control Design Issues

The medium access control protocol dictates how different users share the available spectrum. There are
two components to this spectrum allocation: how to divide the spectrum into different channels, and then
how to assign these different channels to different users. The different methods that can be used to divide
the spectrum into different channels include frequency-division, time-division, code-division, and hybrid
methods. Details on these techniques are given in Chapter 14. When users have very bursty traffic the
most efficient mechanism to assign channels is random access, where users contend for a channel whenever
they have data to transmit. This contention is inefficient when users have continuous stream data or long
packet bursts. In this case some form of scheduling helps to prevent collisions and ensure continuous
connections. The design and tradeoff analysis for different channel assignment strategies was given in
Chapter 14.5.

Random access protocols can be more energy efficient by limiting the amount of time that a given
node spends transmitting and receiving. The paging industry developed a solution to this problem several
decades ago by scheduling “sleep” periods for pagers. The basic idea is that each pager need only listen
for transmissions during certain short periods of time. This is a simple solution to implement when a
central controller is available. It is less obvious how to implement such strategies within the framework
of a distributed control algorithm. Access protocols that utilize node sleep times to minimize energy
consumption are investigated in [10].

Random access schemes can be made more flexible in general, and more energy aware in particular,
by adopting a dynamic programming approach to decisions about transmissions. Under dynamic pro-
gramming, decision making is based on utility (cost) functions - an agent will act or not, depending on
utility of the action as indicated by a utility function computed over some time period. A given protocol
can be made energy aware by introducing the cost of a transmission into the utility function. Consider the
case of ALOHA. In work conducted by MacKenzie at Cornell, a game-theoretic version of ALOHA was
developed that initially focused on a simple “collision game” [41]. In this model the delay and energy cost
of transmission are parameters of the cost function associated with transmission. The resulting system is
both stable (in the language of game theory, there is a Nash Equilibrium) and distributed. It allows for
individual nodes to make autonomous decisions on retransmission strategies. This simple version of the
game assumes that the users know the number of backlogged users within the local neighborhood, but it
is possible to develop utility functions that reflect less ideal situations. In general, the decision-theoretic

407

Visit : www.EasyEngineering.net

Visit : www.EasyEngineering.net

http://www.easyengineering.net


approach provides a convenient way to embed the cost of transmission decisions into random access pro-
tocols. Random access protocols work well with bursty traffic where there are many more users than
available channels, yet these users rarely transmit. If users have long strings of packets or continuous
stream data, then random access works poorly as most transmissions result in collisions. Thus channels
must be assigned to users in a more systematic fashion by transmission scheduling, described in more
detail in Chapter 14.6. Scheduling still requires some mechanism at startup to establish the schedule.

Scheduling under an energy constraint further complicates the problem. Channel capacity under a
finite energy constraint is maximized by transmitting each bit over a very long period of time. However,
when multiple users wish to access the channel, the transmission time allocated to each user must be
limited. Recent work has investigated optimal scheduling algorithms to minimize transmit energy for
multiple users sharing a channel [42]. In this work scheduling was optimized to minimize the transmission
energy required by each user subject to a deadline or delay constraint. The energy minimization was
based on judiciously varying packet transmission time (and corresponding energy consumption) to meet
the delay constraints of the data. This scheme was shown to be significantly more energy efficient than
a deterministic schedule with the same deadline constraint.

Power control improves the efficiency of random access and can often be done in a distributed fashion,
as described in Chapter 14.7. Specifically, distributed power control algorithms exist that insure all users
meet their threshold SINR levels as long as these SINRs are feasible. These algorithms can also modified
to prevent user access when this user cannot be accommodated without compromising the target SINRs
of existing users. Power control for multiple access can also help users meet delay constraints in a
random access environment. Power control has been extensively studied for cellular systems ([43] and
the references therein). However, there are few results outside of [8] on the design and performance of
power control schemes in ad hoc wireless networks, and this remains an active area of research.

16.3 Network Design Issues

16.3.1 Neighbor Discovery and Network Connectivity

“Neighbor discovery” is one of the first steps in the initialization of a network of randomly distributes
nodes. From the perspective of the individual node, this is the process of determining the number and
identity of network nodes with which direct communication can be established given some maximum power
level and minimum link performance requirements (typically in terms of data rate and associated BER).
Clearly the higher the allowed transmit power, the greater the number of nodes in a given neighborhood.

Neighbor discovery begins with a probe of neighboring nodes using an initial power constraint. If the
number of nodes thus contacted is insufficient to ensure some minimal connectivity requirements then the
power constraint is relaxed and probing repeated. The minimal connectivity requirements will depend on
the application, but most ad hoc wireless network applications assume a fully-connected network whereby
each node can reach every other node, often through multiple hops. The exact number of neighbors that
each node requires to obtain a fully-connected network depends on the exact network configuration but
is generally on the order of six to eight for randomly distributed immobile nodes [3, 8]. An analysis of
the minimum transmit power required at each node to maintain full connectivity is done in [59]. Clearly
the ability of the network to stay connected will decrease with node mobility, and so maintaining full
connectivity under high mobility will require larger neighborhoods and an associated increase in transmit
power at each node. It is interesting to note that, given a random distribution of nodes, the likelihood
of complete connectivity changes abruptly from zero to one as the transmission range of each node is
increased [44]. Moreover, the transmission range required for the network to be fully connected increases
as the node density decreases, reflecting the increased probability of deep holes, to borrow a term from
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the theory of lattices. Connectivity is also heavily influenced by the ability to adapt various parameters
at the link layer such as rate, power, and coding, since communication is possible even on links with low
SINR if these parameters are adapted [15].

From the standpoint of power efficiency and operational lifetime, it is also very important that nodes
be able to decide whether or not to take a nap. These sleep decisions must take into account network
connectivity, so it follows that these decisions are local, but not autonomous. Mechanisms that support
such decisions can be based on neighbor discovery coupled with some means for ordering decisions within
the neighborhood. In a given area, the opportunity to sleep should be circulated among the nodes,
ensuring that connectivity is not lost through the coincidence of several, identical decisions to go to sleep.

16.4 Routing

The multihop routing protocol in an ad hoc wireless network is a significant design challenge, especially
under energy constraints where the exchange of routing data consumes precious energy resources. Most
work in multihop routing protocols falls into three main categories: flooding, proactive routing (centralized
or distributed), and reactive routing ([45, 46, 47] and the references therein).

In flooding a packet is broadcast to all nodes within receiving range. These nodes also broadcast
the packet, and the forwarding continues until the packet reaches its ultimate destination. Flooding
has the advantage that it is highly robust to changing network topologies and requires little routing
overhead. In fact, in highly mobile networks flooding may be the only feasible routing strategy. The
obvious disadvantage is that multiple copies of the same packet traverse through the network, wasting
bandwidth and battery power of the transmitting nodes. This disadvantage makes flooding impractical
for all but the smallest of networks.

The opposite philosophy to flooding is centralized route computation. In this approach information
about channel conditions and network topology are determined by each node and forwarded to a cen-
tralized location that computes the routing tables for all nodes in the network. The criterion used to
compute the ”optimal” route depends on the optimization criterion: common criteria include minimum
average delay, minimum number of hops, and recently, minimum network congestion. While centralized
route computation provides the most efficient routing according to the optimality condition, it cannot
adapt to fast changes in the channel conditions or network topology, and also requires much overhead
for collecting local node information and then disseminating the routing information. Centralized route
computation, like flooding, it typically only used in very small networks.

Distributed route computation is the most common routing procedure used in ad hoc wireless net-
works. In this protocol nodes send their connectivity information to neighboring nodes and then routes
are computed from this local information. In particular, nodes determine the next hop in the route of a
packet based on this local information. There are several advantages of distributed route computation.
First, the overhead of exchanging routing information with local nodes is minimal. In addition, this
strategy adapts quickly to link and connectivity changes. The disadvantages of this strategy are that
global routes based on local information are typically suboptimal, and routing loops are often common
in the distributed route computation.

Both centralized and distributed routing require fixed routing tables that must be updated at regular
intervals. An alternate approach is reactive (on-demand) routing, where routes are created only at the
initiation of a source node that has traffic to send to a given destination. This eliminates the overhead
of maintaining routing tables for routes not currently in use. In this strategy a source node initiates a
route-discovery process when it has data to send. This process will determine if one or more routes are
available to the destination. The route or routes are maintained until the source has no more data for that
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particular destination. The advantage of reactive routing is that globally-efficient routes can be obtained
with relatively little overhead, since these routes need not be maintained at all times. The disadvantage
is that reactive routing can entail significant delay, since the route discovery process is initiated when
there is data to send, but this data cannot be transmitted until the route discovery process has concluded.
Recently a combination of reactive and proactive routing has been proposed to reduce the delay associated
with reactive routing as well as the overhead associated with proactive routing [46].

Mobility has a huge impact on routing protocols as it can cause established routes to no longer exist.
High mobility especially degrades the performance of proactive routing, since routing tables quickly
become outdated, requiring an enormous amount of overhead to keep them up to date. Flooding is
effective in maintaining routes under high mobility, but has a huge price in terms of network efficiency.
A modification of flooding called multipath routing has been recently proposed, whereby a packet is
duplicated on only a few paths with a high likelihood of reaching its final destination [47]. This technique
has been shown to perform well under dynamically changing topologies.

Energy constraints in the routing protocol significantly change the problem. First of all, the exchange
of routing information between nodes entails an energy cost: this cost must be traded against the energy
savings that result from using this information to make routes more efficient. In addition, even with
perfect information about the links and network topology, the route computation must change to take
energy constraints into account. Specifically, a route utilizing a small number of hops (low delay) may
use significantly more energy (per node and/or total energy) than a route consisting of a larger number
of hops. Moreover, if one node is often used for forwarding packets the battery of that node will die out
quickly, making that node unavailable for transmitting its own data or forwarding packets for others.
Thus the routing protocol under energy constraints must somehow balance delay constraints, battery
lifetime, and routing efficiency.

There has been much recent work on evaluating routing protocols under energy constraints. In [48]
simulations were used to compare the energy consumption of different well-known routing protocols. Their
results indicate that reactive routing is more energy-efficient. This is not surprising since proactive routing
must maintain routing tables via continuous exchange of routing information, which entails a significant
energy cost. This work was extended in [49] to more accurately model the energy consumption of radios
in a ”listening” mode. The energy consumption for this mode, ignored in [48], was significant and based
on this more accurate model it was concluded that the proactive and reactive routing schemes analyzed
in [48] have roughly the same energy consumption. The paper goes on to propose a sleep mode for nodes
that reduces energy consumption by up to 40control and adaptive coding to minimize the energy cost of
routes Power control to optimize energy-efficiency in routing is also studied in [50].

16.4.1 Scalability and Distributed Protocols

Scalability arises naturally in the design of self-configuring ad hoc wireless networks. The key to self-
configuration lies in the use of distributed network control algorithms: algorithms that adjust local
performance to account for local conditions. To the extent that these algorithms forgo the use of cen-
tralized information and control resources, the resulting network will be scalable. Work on scalability
in ad hoc wireless networks has mainly focused on self-organization [10, 51], distributed routing [52],
mobility management [4], QoS support, and security [54]. Note that distributed protocols often consume
a fair amount of energy in local processing and message exchange: this is analyzed in detail for security
protocols in [55]. Thus interesting tradeoffs arise as to how much local processing should be done versus
transmitting information to a centralized location for processing. Most work on scalability in ad hoc
wireless networks has focused on relatively small networks, less than 100 nodes. Many ad-hoc network
applications, especially sensor networks, could have hundreds to thousands of nodes or even more. The
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ability of existing network protocols to scale to such large network sizes remains an open question.

16.4.2 Network Capacity

The fundamental capacity limit of an ad hoc wireless network - the set of maximum data rates possible
between all nodes - is a highly challenging problem in information theory. In fact, the capacity for simple
channel configurations within an ad hoc wireless network such as the general relay and interference
channel remain unsolved [56]. In a recent landmark paper an upper bound on the performance of an
asymptotically large ad hoc wireless network in terms of the uniformly achievable maximum data rate
was determined [57]. Surprisingly this result indicates that even with optimal routing and scheduling,
the per-node rate in a large ad hoc wireless network goes to zero. To a large extent this pessimistic
result indicates that in a large network all nodes should not communicate with all other nodes: there
should be distributed processing of information within local neighborhoods. This work was extended in
[58] to show that node mobility actually increases the per-node rate to a constant, i.e. mobility increases
network capacity. This result follows from the fact that mobility introduces variation in the network that
can be exploited to improve per-user rates. Other recent work in this area has determined achievable
rate regions for ad hoc wireless networks using adaptive transmission strategies [34] and an information
theoretic analysis on achievable rates between nodes [59].

16.5 Application Design Issues

In true cross layer protocol design, the highest layer - the application - can play a significant role in
network efficiency. In this section we consider network adaptation to the application requirements and
application adaptation to the underlying network capabilities.

16.5.1 Adaptive QoS

The Internet today, even with high-speed high-quality fixed communication links, is unable to deliver
guaranteed QoS to the application in terms of guaranteed end-to-end rates or delays. For ad hoc wireless
networks, with low-capacity error-prone time- varying links, mobile users, and a dynamic topology, the
notion of being able to guarantee these forms of QoS is simply unrealistic. Therefore, ad hoc wireless
network applications must adapt to time-varying QoS parameters offered by the network. While adap-
tivity at the link and network level as described in previous sections will provide the best possible QoS to
the application, this QoS will vary with time as channel conditions, network topology, and user demands
change. Applications must therefore adapt to the QoS that is offered. There can also be a negotiation for
QoS such that users with a higher priority can obtain a better QoS by lowering the QoS of less important
users.

As a simple example, the network may offer the application a rate- delay tradeoff curve which is
derived from the capabilities of the lower layer protocols [25]. The application layer must then decide
at which point on this curve to operate. Some applications may be able to tolerate a higher delay but
not a lower overall rate. Examples include data applications in which the overall data rate must be
high but latency might be tolerable. Other applications might be extremely sensitive to delay (e.g. a
distributed-control application) but might be able to tolerate a lower rate (e.g. via a coarser quantization
of sensor data). Energy constraints introduce another set of tradeoffs related to network performance
versus longevity. Thus, these tradeoff curves will typically be multidimensional to incorporate rate, delay,
bit-error-rate, longevity, etc. These tradeoff curves will also change with time as the number of users on
the network and the network environment change.
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16.5.2 Application Adaptation and Cross Layer Design Revisited

In addition to adaptive QoS, the application itself can adapt to the QoS offered. For example, for ap-
plications like video with a hard delay constraint, the video compression algorithm might change its
compression rate such that the source rate adjusts to the rate the network can deliver under the delay
constraint. Thus, under poor network conditions compression would be higher (lower transmission rate)
and the end quality would be poorer. There has been much recent work on application adaptation for
wireless networks ([60, 61, 53] and the references therein). This work indicates that even demanding ap-
plications like video can deliver good overall performance under poor network conditions if the application
is given the flexibility to adapt.

The concept of application adaptation returns us to the cross layer design issue discussed earlier.
While the application can adapt to a rate-delay-performance tradeoff curve offered by the network and
underlying links, by making the lower layer protocols aware of the tradeoffs inherent to the application
adaptation, that tradeoff curve might be adjusted to improve end-to-end performance without using up
more resources in the network. In other words, if the application is aware of the lower layer protocol
tradeoffs and these protocols aware of the application tradeoffs, these tradeoffs curves can be merged
to operate at the best point relative to end-to-end performance. While implementing this philosophy
remains a wide open research problem, it holds significant promise for the performance of ad hoc wireless
networks.
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Appendix A

Representation of Bandpass Signals and
Systems
Many signals in communication systems are bandpass signals occupying a narrow bandwidth B centered
around a carrier frequency fc with B << fc, as illustrated in Figure 16.4. Such signals result from
modulation of a baseband signal by a carrier. The bandwidth B of a bandpass signal is roughly equal to
the range of frequencies around fc where the signal has nonnegligible amplitude, and bandpass signals
have B << fc.

f cc−f 0

B<<f
c

Figure 16.4: Bandpass Signal.

In practice only real signals can be processed at the transmitter and receiver, so both transmitted
and received signals must be modeled as real. However, channel models are often based on a real impulse
response in the time domain, which in general has a complex Fourier transform. Thus, we require signal
models that capture the effect of a complex channel frequency response operating on a real transmitted
signal.

Let us begin by representing a bandpass signal s(t) at carrier frequency fc in the following form:

s(t) = x(t) cos(2πfct) − y(t) sin(2πfct), (16.1)

where x(t) and y(t) are real baseband signals of bandwidth B << fc and we neglect the initial phase
of the carrier since it does not affect our development. This is a common representation for bandpass
signals and noise. In fact, modulations such as MPSK and MQAM are based on this representation. We
call x(t) = <{u(t)} the in-phase component of s(t) and y(t) = ={u(t)} the quadrature component
of s(t). Let us define the complex signal u(t) = x(t) + jy(t). Then u(t) is a complex baseband signal of
bandwidth B. With this definition we see that

s(t) = <{u(t)} cos(2πfct) −={u(t)} sin(2πfct) = <
{
u(t)ej(2πfct+φ0)

}
. (16.2)

The representation on the right hand side of this equation is called the complex baseband represen-
tation of the bandpass signal s(t), and the baseband signal u(t) is called the equivalent baseband
signal for s(t) or its complex envelope.

Using properties of the Fourier transform we can show that

S(f) = .5[U(f − fc) + U∗(−f − fc)]. (16.3)

Since s(t) is real, S(f) is symmetric about f = 0. However, the lowpass signals U(f) and U∗(f) are not
necessarily symmetric about f = 0, which leads to an asymmetry of S(f) about the carrier frequency fc
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as shown in Figure 16.4. In fact, S(f) is only symmetric about the carrier frequency if u(t) = x(t), i.e. if
there is no quadrature component in u(t). We will see shortly that this asymmetry affects the response
of bandpass systems to bandpass signals.

An alternate representation of the equivalent baseband signal is

u(t) = a(t)ejθ(t), (16.4)

with envelope
a(t) =

√
x2(t) + y2(t), (16.5)

and phase

θ(t) = tan−1
{
y(t)
x(t)

}
. (16.6)

With this representation

s(t) = <
{
a(t)ejθ(t)ej(2πfct)

}
= a(t) cos(2πfct+ θ(t)). (16.7)

Let us now consider a real channel impulse response h(t) with Fourier transform H(f). If h(t) is
real then H∗(−f) = H(f). In communication systems we are mainly interested in the channel frequency
response around the center frequency fc and within the bandwidth B of the transmitted signal, since after
filtering in the receiver only these frequency components of H(f) affect the received signal. A bandpass
channel is similar to a bandpass signal, with frequency response H(f) centered at fc with a bandwidth
of B << fc. To capture the frequency response of H(f) around fc, we develop an equivalent baseband
system model similar to the equivalent baseband signal model as follows. Since H(f) is a bandpass
filter, using the previous development the frequency response h(t) of H(f) can be written in its complex
baseband representation

h(t) = 2<
{
hl(t)ej2πfct

}
, (16.8)

where the extra factor of 2 will be explained shortly. We call hl(t) the baseband equivalent filter for
H(f). Using (16.3) this implies that

H(f) = Hl(f − fc) +H∗
l (−f − fc), (16.9)

so H(f) consists of two components: Hl(f) shifted up by fc, and H∗
l (f) shifted down by fc. Note that if

H(f) is symmetric about the carrier frequency fc then hl(t) will be real and its frequency response Hl(f)
symmetric about zero. However, in many systems and channels, e.g. frequency-selective fading channels,
H(f) is not symmetric about fc, in which case hl(t) is complex with in-phase component hx(t) = <{hl(t)}
and quadrature component hy(t) = ={hl(t)}. Note that if hl(t) is complex then Hl(f) is not symmetric
about zero and thus H(f) is not symmetrics about fc.

We now use these canonical representations to study the output of a channel to a bandpass signal
input. Let s(t) denote the input signal with equivalent lowpass signal u(t). Let h(t) denote the channel
impulse response with equivalent lowpass response hl(t). The channel output r(t) = s(t) ∗ h(t) or,
equivalently, R(f) = H(f)S(f). Since S(f) is a bandpass signal, R(f) will also be a bandpass signal, so
we can represent it as

r(t) = <
{
v(t)ej(2πfct+φ0)

}
. (16.10)

We now consider the relationship between the lowpass equivalent signals corresponding to the channel
input s(t), channel impulse response h(t), and channel output r(t). We can express the frequency response
of the channel output as

R(f) = H(f)S(f) = .5[U(f − fc) + U∗(−f − fc)][Hl(f − fc) +H∗
l (−f − fc)]. (16.11)
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For bandpass signals and channels where the bandwidth of u(t) is much less than the carrier frequency,
we have

U(f − fc)H∗
l (−f − fc) = 0

and
U∗(−f − fc)Hl(f − fc) = 0

. Thus,
R(f) = .5[U(f − fc)Hl(f − fc) + U∗(−f − fc)H∗

l (−f − fc)]. (16.12)

From (16.10) we also have that R(f) = .5[V (f − fc) + V ∗(−f − fc)]. Combining this with (16.12) yields
that

V (f − fc) = U(f − fc)Hl(f − fc)

and
V ∗(−f − fc) = U∗(−f − fc)H∗

l (−f − fc)

or, equivalently, that
V (f) = Hl(f)U(f) (16.13)

and therefore v(t) = hl(t) ∗u(t). In other words, we can obtain the lowpass equivalent signal v(t) for r(t)
by taking the convolution of hl(t) and u(t). The received signal is therefore given by

r(t) = <
{
u(t) ∗ hl(t)ej(2πfct)

}
. (16.14)

Note that V (f) = Hl(f)U(f) is symmetric about f = 0 only if both U(f) and Hl(f) are. In other words,
the lowpass equivalent received signal will have both in-phase and quadrature components if either u(t)
or hl(t) are complex. Moreover, if u(t) = x(t) is real (no quadrature component) but the channel impulse
resonse hl(t) = hx(t) + jhy(t) is complex (e.g. in frequency-selective fading) then

v(t) = x(t) ∗ hx(t) + jx(t) ∗ hy(t)

is complex, so the received signal will have both an in-phase and quadrature component. More generally,
if u(t) = x(t) + jy(t) and hl(t) = hx(t) + jhy(t) then

v(t) = [x(t) + jy(t)] ∗ [hx(t) + jhy(t)] = [x(t) ∗ hx(t) − y(t) ∗ hy(t)] + j[x(t) ∗ hy(t) + y(t) ∗ hx(t)]

. So the in-phase component of v(t) depends on both the in-phase and quadrature components of u(t),
and similarly for the quadrature component of u(t). As we discuss in Chapter 6, this creates problems in
detection of modulated signals, since it causes the in-phase and quadrature parts of the modulated signal
to interfere with each other.

The main point of this appendix is to show that in studying bandpass signals and systems, we can
either do the analysis at the bandpass frequency or analyze just the lowpass equivalent models for the
transmitted signal, channel impulse response, and received signal. These lowpass equivalent models are
often used in analyzing communication systems to remove the dependency on a fixed carrier frequency
fc and to simplify the analysis.
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